Previous |  Up |  Next

Article

Title: Semiclean and quasi-clean elements in rings (English)
Author: Ma, Guanglin
Author: Leroy, André
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 75
Issue: 4
Year: 2025
Pages: 1431-1441
Summary lang: English
.
Category: math
.
Summary: We prove uniquely semiclean rings are reduced and hence Abelian. The semiclean elements of $R$, $R[x]$, and $M_n(R)$ are compared. In particular, we show that the indeterminate $x$ is never semiclean. The 2-primality of a ring $R$ is characterized via the semiclean elements of $R[x]$. We also consider the quasi-clean elements of a ring $R$ and compare them with the semiclean elements of $R$. (English)
Keyword: periodic element
Keyword: semiclean element
Keyword: 2-primal
Keyword: polynomial ring
MSC: 16P10
MSC: 16U40
MSC: 16U99
DOI: 10.21136/CMJ.2025.0290-25
.
Date available: 2025-12-20T08:01:22Z
Last updated: 2025-12-22
Stable URL: http://hdl.handle.net/10338.dmlcz/153251
.
Reference: [1] Abdi, M., Leroy, A.: Graphs of commutatively closed sets.Linear Multilinear Algebra 70 (2022), 6965-6977. Zbl 1515.16033, MR 4568594, 10.1080/03081087.2021.1975621
Reference: [2] Camillo, V. P., Khurana, D.: A characterization of unit regular rings.Commun. Algebra 29 (2001), 2293-2295. Zbl 0992.16011, MR 1837978, 10.1081/AGB-100002185
Reference: [3] Chacron, M.: On a theorem of Herstein.Can. J. Math. 21 (1969), 1348-1353. Zbl 0213.04302, MR 0262295, 10.4153/CJM-1969-148-5
Reference: [4] Chen, H.: A note on potent elements.Kyungpook Math. J. 45 (2005), 519-526. Zbl 1118.16005, MR 2205953
Reference: [5] Chen, H., Abdolyousefi, M. Sheibani: Theory of Clean Rings and Matrices.World Scientific, Singapore (2023). Zbl 1523.16001, MR 4544908, 10.1142/12959
Reference: [6] Chen, W.: $P$-clean rings.Int. J. Math. Math. Sci. 2006 (2006), Article ID 75247, 7 pages. Zbl 1123.16021, MR 2251642, 10.1155/IJMMS/2006/75247
Reference: [7] Diesl, A. J.: Nil clean rings.J. Algebra 383 (2013), 197-211. Zbl 1296.16016, MR 3037975, 10.1016/j.jalgebra.2013.02.020
Reference: [8] Kanwar, P., Leroy, A., Matczuk, J.: Clean elements in polynomial rings.Noncommutative Rings and Their Applications Contemporary Mathematics 634. AMS, Providence (2015), 197-204. Zbl 1326.16035, MR 3307398, 10.1090/conm/634
Reference: [9] Leroy, A., Matczuk, J.: Remarks on the Jacobson radical.Rings, Modules and Codes Contemporary Mathematics 727. AMS, Providence (2019), 269-276. Zbl 1429.16014, MR 3938155, 10.1090/conm/727
Reference: [10] Ma, G., Leroy, A., Nasernejad, M.: Periodic and potent elements.(to appear) in J. Algebra Appl. 10.1142/S0219498825503323
Reference: [11] McGovern, W. W.: The group ring $Z_(p)C_q$ and Ye's theorem.J. Algebra Appl. 17 (2018), Article ID 1850111, 5 pages \99999DOI99999 10.1142/S0219498818501116 \goodbreak. Zbl 1440.13103, MR 3805722, 10.1142/S0219498818501116
Reference: [12] Nicholson, W. K.: Strongly clean rings and Fitting's lemma.Commun. Algebra 27 (1999), 3583-3592. Zbl 0946.16007, MR 1699586, 10.1080/00927879908826649
Reference: [13] Ye, Y.: Semiclean rings.Commun. Algebra 31 (2003), 5609-5625. Zbl 1043.16015, MR 2005247, 10.1081/AGB-120023977
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo