Previous |  Up |  Next

Article

Keywords:
asymptotic stability in probability; control Lyapunov function; smooth state feedback law
Summary:
The purpose of this paper is to provide sufficient conditions for the feedback asymptotic stabilization in probability for a class of affine in the control nonlinear stochastic differential systems. In fact, under the assumptions stated in this paper we prove the existence of a control Lyapunov function that according to the stochastic version of Artstein's theorem guarantees the asymptotic stability in probability by means of a state feedback law that is smooth except eventually at the equilibrium. This result generalizes the well-known theorem of Vidyasagar concerning the feedback stabilization problem for interconnected control systems.
References:
[1] Abedi, F., Leong, W. J.: Stabilization of some composite stochastic control systems with nontrivial solutions. Europ- J. Control 38 (2017), 16-21. DOI 
[2] Abedi, F., Leong, W. J., Chaharborj, S. S.: A notion of stability in probability of stochastic nonlinear systems. Adv. Differ. Equations 2013 (2013), 363. DOI 
[3] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Analysis Theory Methods Appl. 7 (1983), 1163-1173. DOI  | Zbl 0525.93053
[4] C.Boulanger: Stabilization of nonlinear stochastic systems using control Lyapunov function. In: Proc. 36th IEEE CDC, San Diego 1997.
[5] Daumail, L., Florchinger, P.: A constructive extension of Artstein's theorem to the stochastic context. Stochast. Dynamics 2 (2002), 2, 251-263. DOI 
[6] Deng, H., Krstić, M., Williams, R.: Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Control 46 (2001), 8, 1237-1253. DOI 
[7] Florchinger, P.: A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis Appl. 11 (1993), 2, 155-162. DOI 
[8] Florchinger, P.: Lyapunov-like techniques for stochastic stability. SIAM J. Control Optim. 33 (1995), 4, 1151-1169. DOI  | MR 1339059 | Zbl 0845.93085
[9] Florchinger, P.: Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method. SIAM J. Control Optim. 35 (1997), 2, 500-511. DOI 
[10] Florchinger, P.: New results on universal formulas for the stabilization of stochastic differential systems. Stochast. Anal. Appl. 16 (1998), 2, 233-240. DOI 
[11] Florchinger, P.: A stochastic Jurdjevic-Quinn theorem. SIAM J. Control Optim. 41 (2002), 1, 83-88. DOI  | Zbl 1014.60062
[12] Florchinger, P.: Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers. Kybernetika 58 (2022), 4, 626-636. DOI 
[13] Gao, Z. Y., Ahmed, N. U.: Feedback stabilizability of nonlinear stochastic systems with state-dependent noise. Int.J. Control 45(1987), 2, 729-737. DOI 
[14] Himmi, H., Oumoun, M.: Design stabilizers for multi-input affine control stochastic systems via stochastic control Lyapunov functions. Int.J. Control 98 (2024), 2, 393-401. DOI 
[15] Khasminskii, R. Z.: Stochastic Stability of Differential Equations. Sijthoff Noordhoff, Alphen aan den Rijn 1980. Zbl 1241.60002
[16] Kushner, H. J.: Converse theorems for stochastic Liapunov functions. J. Control Optim. 5 (1967), 2, 228-233. DOI 
[17] M.Oumoun: Continuous stabilization of composite stochastic systems. IFAC-PapersOnLine 55 12 (2022) 713-716. DOI 
[18] Silva, G. F., McFadyen, A., Ford, J.: Scalable input-to-state stability of nonlinear interconnected systems. EEE Trans. Automat. Control 70 (2025), 3, 1824-1834. DOI 
[19] Sontag, E. D.: A universal construction of Artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117-123. DOI 
[20] Tsinias, J.: Asymptotic feedback stabilization: A sufficient condition for the existence of control Lyapunov functions. Systems Control Lett. 15 (1990), 441-448. DOI 
[21] Tsinias, J.: Existence of control Lyapunov functions and applications to state feedback stabilizability of nonlinear systems. SIAM J. Control Optim. 29 (1991), 2, 457-473. DOI 
[22] Tsinias, J.: On the existence of control Lyapunov functions: Generalizations of Vidyasagar's theorem on nonlinear stabilization. SIAM J. Control Optim. 30 (1992), 4, 879-893. DOI 
[23] Tsinias, J., Kalouptsidis, N.: Output feedback stabilization. IEEE Trans. Automat. Control 35 (1990), 951-954. DOI 
[24] Vidyasagar, M.: Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability. IEEE Trans. Automat. Control 25 (1980), 773-779. DOI 
Partner of
EuDML logo