[1] Birihanu, E., Lendák, I.:
Explainable correlation-based anomaly detection for industrial control systems. Forntiers Artificial Intelligence 7 (2025).
DOI
[2] Candanedo, L.:
Appliances Energy Prediction [Dataset]. UCI Machine Learning Repository.
DOI
[3] Candanedo, L., Feldheim, V., Deramaix, D.:
Data driven prediction models of energy use of appliances in a low-energy house. Energy Buildings 140 (2017), 81-97.
DOI
[4] Carpendale, S.:
Evaluating Information Visualizations. Lecture Notes in Computer Science 4950 (2008).
DOI
[5] Chen, Y. F., Long, Y. T., Yang, Z., Long, J.:
Correlation embedding semantic-enhanced hashing for multimedia retrieval. Image Vision Comput. 154 (2025).
DOI
[6] Chen, A., Wu, C. D., Leng, C. J.:
Hourglass-GCN for 3D human pose estimation using skeleton structure and view correlation. Computers Materials Continua 82 (2025), Q, 173-191.
DOI
[7] Cortez, P., Cerdeira, A., al., F. Almeida et:
Wine Quality [Dataset]. UCI Machine Learning Repository.
DOI
[8] Cortez, P., Cerdeira, A., al., F. Almeida et:
Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47 (2009), 4, 547-553.
DOI
[9] Dudáš, A.:
Graphical representation of data prediction potential: correlation graphs and correlation chains. Visual Computer 40 (2024), 10, 6969-6982.
DOI
[10] A, A. Dudáš, Kršák, E., Kvaššay, M.:
Exploration and deconstruction of correlation cycles in multidimensional datasets. Technologies 13 (2025), 2.
DOI
[11] Dudáš, A., Vagač, M.:
Diagnostic analysis approach to correlation maps through large language models. In: Proc. 2024 IEEE 17th International Scientific Conference on Informatics 2024.
DOI
[12] Held, H.: Quantile-filtered Bayesian learning for the correlation class. In: Proc. 5th International Symposium on Imprecise Probability 2007, pp. 223-232.
[13] Iantovics, L. B.:
Avoiding mistakes in bivariate linear regression and correlation analysis, in rigorous research. Acta Polytechn. Hungarica 21 (2024), 6, 33-52.
DOI
[14] Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Moller, T.:
A systematic review on the practice of evaluating visualization. IEEE Trans. Visual. Computer Graphics 19 (2013), 12, 2818-2827.
DOI
[15] Jamei, M., Bailek, N., Bouchouicha, K., Hassan, M. A., al., A. Elbeltagi et:
Data-driven models for predicting solar radiation in semi-arid regions. Computers Materials Continua 74 (2023), 1, 1625-1640.
DOI
[16] Jianu, 0., Dragoicea, M.: Enhancing seismic analysis: A fusion of smar visualization and correlation techniques. Univ. Politeh. Bucharest Sci. Bull. Ser. C - Electr. Engrg. Comput. Sci. 86 (2024), 3, 51-66.
[17] Karduni, A., Markant, D., Wesslen, R., Dou, V. W.:
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations. IEEE Trans. Visual. Computer Graphics 27 (2021), 2, 978-988.
DOI
[18] Lee, S., Seong, H., Lee, S., Kim, E.:
Correlation verification for image retrieval and its memory footprint optimization. IEEE Trans. Pattern Anal. Machine Intell. 47 (2025), 3, 1514-1529.
DOI
[19] Li, L. C., He, Z. X., Wang, B. Z., Wang, Z., Li, L. B.:
Multi-agent reinforcement learning algorithm based on local information. In: Lecture Notes in Electrical Engineering. Proc. 2022 International Conference on Autonomous Unmanned Systems 2022, 1010, pp. 3080-3091.
DOI
[20] Monroy-Castillo, B. E., Jácome, M. A., Cao, R. C. R.:
Improved distance correlation estimation. Appl. Intelligence 55 (2025), 4.
DOI
[21] Pahuja, N.:
Correlations in multispecies PASEP on a ring. Electron. Commun. Probab. 30 (2025).
DOI
[22] Skiena, S. S.:
The Data Science Design Manual. Springer, 2017.
DOI
[23] Yang, K. H., She, C. W., Zhang, W., Yao, J. Q., Long, S. S.:
Multi-label learning based on transfer learning and label correlation. Computers Materials Continua 61 (2019), 1, 155-169.
DOI
[24] Zhang, L., Hou, Q. B., Liu, Y., Bian, J. W., al., X. Xu et:
Deep negative correlation classification. Machine Learning 113 (2024), 10, 7223-7241.
DOI