Previous |  Up |  Next

Article

Title: New methods to construct uninorms by extending uninorms with closure operators and t-superconorms (English)
Author: Qi, Jun
Author: Xiu, Zhen-Yu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 61
Issue: 6
Year: 2025
Pages: 855-871
Summary lang: English
.
Category: math
.
Summary: In this paper, we provide new methods to construct uninorms by extending given uninorms on a subinterval of a bounded lattice with closure operators (resp. interior operators) and t-superconorms (resp. t-subnorms). Meanwhile, these methods for uninorms generalize some known methods for uninorms in the literature. An example is also provided to show our method. (English)
Keyword: bounded lattices
Keyword: closure operators
Keyword: t-superconorms
Keyword: uninorms
MSC: 03B52
MSC: 03E72
MSC: 06B20
DOI: 10.14736/kyb-2025-6-0855
.
Date available: 2026-01-07T16:40:23Z
Last updated: 2026-01-07
Stable URL: http://hdl.handle.net/10338.dmlcz/153267
.
Reference: [1] Aşcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices..Fuzzy Sets Systems 408 (2021), 65-85.
Reference: [2] Birkhoff, G.: Lattice Theory..Amer. Math. Soc., Rhode Island, 1967. Zbl 0537.06001
Reference: [3] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, September 11-13, Subotica, Serbia, 2014, 61-66.
Reference: [4] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inform. Sci. 367 (2016), 221-231.
Reference: [5] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices..Int. J. General Systems 52 (2023), 4, 414-442.
Reference: [6] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices..Int. J. General Systems 50 (2021), 139-158.
Reference: [7] Çaylı, G. D.: An alternative construction of uninorms on bounded lattices..Int. J. General Systems 52 (2023), 5, 574-596.
Reference: [8] Çaylı, G. D.: Constructing uninorms on bounded lattices through closure and interior operators..Int. J. Uncertainty Fuzziness Knowledge-Based Systems 32 (2024), 1, 109-129.
Reference: [9] Everett, C. J.: Closure operators and Galois theory in lattices..Trans. Amer. Math. Soc. 55 (1944), 514-525.
Reference: [10] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes..Inform. Sci. 181 (2011), 23-43.
Reference: [11] Hájek, P.: Combining Functions for Certainty Degrees in Consulting Systems..Int. J. Man-Machine Studies 22 (1985), 1, 59-76.
Reference: [12] Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems..CRC Press, Boca Raton 1992.
Reference: [13] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices"..Kybernetika 57 (2021), 2, 372-382.
Reference: [14] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators..Int. J. Approx. Reason. 136 (2021), 1-13.
Reference: [15] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms..Fuzzy Sets Systems 427 (2022), 109-131.
Reference: [16] Ji, W.: Constructions of uninorms on bounded lattices by means of t-subnorms and t-subconorms..Fuzzy Sets Systems 403 (2021), 38-55.
Reference: [17] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Systems 261 (2015), 33-43.
Reference: [18] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices..Fuzzy Sets Systems 308 (2017), 54-71.
Reference: [19] Klement, E. P., Mesiar, R., Pap, E.: A Universal Integral As Common Frame for Choquet and Sugeno Integral..IEEE Trans. Fuzzy Systems 18 (2010), 178-187.
Reference: [20] Menger, K.: Statistical metrics..In: Proc. National Academy of Sciences of the United States of America 8 (1942), 535-537. Zbl 0063.03886,
Reference: [21] Metcalfe, G., Montagna, F.: Substructural Fuzzy Logics..J. Symbolic Logic 72 (2007), 3, 834-864.
Reference: [22] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice..Fuzzy Sets Systems 395 (2020), 93-106.
Reference: [23] Palmeira, E. S., Bedregal, B. C.: Extension of fuzzy logic operators defined on bounded lattices via retractions..Comput. Math. Appl. 63 (2012), 1026-1038.
Reference: [24] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Systems 157 (2006), 1403-1416. Zbl 1099.06004,
Reference: [25] Takács, M.: Uninorm-Based Models for FLC Systems..J. Intell. Fuzzy Systems 19 (2008), 1, 65-73.
Reference: [26] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms..Fuzzy Sets Systems 465 (2023), 108535.
Reference: [27] Xiu, Z. Y., Zheng, X.: A new approach to construct uninorms via uninorms on bounded lattices..Kybernetika 60 (2024), 2, 125-149.
Reference: [28] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Systems 80 (1996), 111-120. Zbl 0871.04007,
Reference: [29] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices..Int. J. Approx. Reasoning 130 (2021), 22-49.
Reference: [30] Zhang, H. P., Wu, M., Wang, Z., Ouyang, Y., Baets, B. De: A characterization of the classes Umin and Umax of uninorms on a bounded lattice..Fuzzy Sets Systems 423 (2021), 107-121.
.

Files

Files Size Format View
Kybernetika_61-2025-6_6.pdf 443.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo