Previous |  Up |  Next


Title: Metric Sobolev spaces (English)
Author: Koskela, Pekka
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 7
Issue: 2002
Pages: 133-147
Category: math
Summary: We describe an approach to establish a theory of metric Sobolev spaces based on Lipschitz functions and their pointwise Lipschitz constants and the Poincaré inequality. (English)
Keyword: Lipschitz function
Keyword: Poicaré inequality
Keyword: upper gradient
Keyword: Sobolev space
MSC: 46E35
Date available: 2009-10-08T09:50:04Z
Last updated: 2012-08-03
Stable URL:
Reference: [1] Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces.Geom. Funct. Anal. 9 (1999), 428–517. Zbl 0942.58018, MR 2000g:53043. Zbl 0942.58018, MR 1708448
Reference: [2] Franchi B., Hajłasz P., Koskela P.: Definitions of Sobolev classes on metric spaces.Ann. Inst. Fourier (Grenoble) 49 (1999), 1903–1924. Zbl 0938.46037, MR 2001a:46033. Zbl 0938.46037, MR 1738070
Reference: [3] Hajłasz P., Koskela P.: Sobolev meets Poincaré.C. R. Acad. Sci. Paris, Sér. I Math. 320 (1995), 1211–1215. Zbl 0837.46024, MR 96f:46062. MR 1336257
Reference: [4] Hajłasz P., Koskela P.: Sobolev met Poincaré.Mem. Amer. Math. Soc. 145 (2000). Zbl 0954.46022, MR 2000j:46063. MR 1683160
Reference: [5] Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry.Acta Math. 181 (1998), 1–61. Zbl 0915.30018, MR 99j:30025. Zbl 0915.30018, MR 1654771
Reference: [6] Heinonen J., Koskela P., Shanmuganlingam N., Tyson J.: Sobolev spaces on metric measure spaces: an approach based on upper gradients.(in preparation).
Reference: [7] Keith S.: A differentiable structure for metric measure spaces.Advances Math. (to appear). Zbl 1077.46027, MR 2703118
Reference: [8] Keith S.: Modulus and the Poincaré inequality on metric measure spaces.Math. Z. (to appear). Zbl 1037.31009, MR 2013501
Reference: [9] Keith S., Rajala K.: A remark on Poincaré inequalities on metric measure spaces.Preprint. Zbl 1070.31003, MR 2098359
Reference: [10] Koskela P., Onninen J.: Sharp inequalities via truncation.J. Math. Anal. Appl. 278 (2003), 324–334. Zbl 1019.26003, MR 1974010
Reference: [11] Liu Y., Lu G., Wheeden R. L.: Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces.Math. Ann. 323 (2002), 157–174. Zbl 1007.46034, MR 2003f:46048. Zbl 1007.46034, MR 1906913
Reference: [12] Lu G., Wheeden R. L.: High order representation formulas and embedding theorems on stratified groups and generalizations.Studia Math. 142 (2000), 101–133. Zbl 0974.46039, MR 2001k:46055. Zbl 0974.46039, MR 1792599
Reference: [13] Malý J., Pick L.: The sharp Riesz potential estimates in metric spaces.Indiana Univ. Math. J. 51 (2002), 251–268. Zbl pre01780940, MR 2003d:46045. Zbl 1038.46027, MR 1909289
Reference: [14] Rissanen J.: Wavelets on self-similar sets and the structure of the spaces $M^{1,p}(E,\mu )$.Ann. Acad. Sci. Fenn. Math. Diss. 125 (2002). Zbl 0993.42016, MR 2002k:42081. MR 1880640
Reference: [15] Semmes S.: Some novel types of fractal geometry.Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2001.Zbl 0970.28001, MR 2002h:53073. Zbl 0970.28001, MR 1815356
Reference: [16] Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces.Rev. Mat. Iberoamericana 16 (2000), 243–279. Zbl 0974.46038, MR 2002b:46059. Zbl 0974.46038, MR 1809341


Files Size Format View
NAFSA_102-2002-1_6.pdf 357.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo