Previous |  Up |  Next

Article

Title: Uniform $L^1$ error bounds for semi-discrete finite element solutions of evolutionary integral equations (English)
Author: Lin, Qun
Author: Xu, Da
Author: Zhang, Shuhua
Language: English
Journal: Applications of Mathematics 2012
Volume: Proceedings. Prague, May 2-5, 2012
Issue: 2012
Year:
Pages: 144-162
.
Category: math
.
Summary: In this paper, we consider the second-order continuous time Galerkin approximation of the solution to the initial problem $u_{t}+\int_{0}^{t}\beta (t-s) Au(s)ds=0,u(0)=v,t>0,$ where A is an elliptic partial-differential operator and $\beta(t)$ is positive, nonincreasing and log-convex on $(0,\infty)$ with $0\leq\beta(\infty)<\beta(0^{+})\leq\infty$. Error estimates are derived in the norm of $L^{1}_{t}(0,\infty;L^{2}_{x})$, and some estimates for the first order time derivatives of the errors are also given. (English)
Keyword: evolutionary integral equation
Keyword: semi-discrete finite element solution
Keyword: uniform error bound
Keyword: Galerkin approximation
Keyword: elliptic partial-differential operator
MSC: 45D05
MSC: 65K05
MSC: 65R20
idZBL: Zbl 1313.65336
idMR: MR3204408
.
Date available: 2017-02-14T09:01:06Z
Last updated: 2017-04-13
Stable URL: http://hdl.handle.net/10338.dmlcz/702901
.

Files

Files Size Format View
ApplMath_01-2012-1_19.pdf 280.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo