Previous |  Up |  Next

Article

Title: Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory (English)
Author: Vannella, Giuseppina
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 89-96
.
Category: math
.
Summary: We consider the quasilinear elliptic problem \[ (P_\lambda) \ \ \left\{ \begin{array}{ll} - \Delta _{p}u = \lambda u^{q-1} + u^{p^*-1} & \hbox{in} \ \Omega \\ u>0 & \hbox{in} \ \Omega \\ u=0 & \hbox{on} \ \partial \Omega \end{array} \right. \] where $\Omega$ is bounded in $\R^N$, $N \geq p^2, \, 1< p \leq q < p^*, \, p^*= \frac{Np}{N-p}%Np/(N-p) , \, \lambda >0$ is a parameter. Denoting by ${\mathcal P}_1(\O)$ the Poincar\´e polynomial of $0$, we state that, for any $p>1$, there exists $\lambda^*>0$ such that, for any $\lambda\in (0,\lambda^*)$, either $(P_\lambda)$ has at least ${\mathcal P}_1(\O)$ distinct solutions or, if not, $(P_\l)$ can be approached by a sequence of problems $(P_n)_{n \in \N}$, each having at least $(P_n)_{n \in \N}$ distinct solutions. These results have been proved in [12] only as regards the case p 2, while they will be completely proved in the forthcoming work [13] in the case $p\geq2$, while they will be completely proved in the forthcoming work \cite{cvip} in the case $p\in (1,2)$. Note that, when $p\geq2$, the Euler functional associated to $(P_\l)$ is never $C^2$, so the approach already used for $p\geq 2$ fails. This problem will be faced exploiting recent results given in [7] and [8]. (English)
Keyword: Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index
MSC: 35B20
MSC: 35B33
MSC: 35J92
MSC: 58E05
.
Date available: 2019-09-27T09:11:20Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703021
.
Reference: [1] Alves, C.O., Ding, Y.H.: Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity., J. Math. Anal. Appl., 279 (2003), pp. 508–521. MR 1974041, 10.1016/S0022-247X(03)00026-X
Reference: [2] Azorero, J.G., Peral, I.: Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues., Comm. Partial Differential Equations, 12 (1987), pp. 1389–1430. MR 0912211
Reference: [3] Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents., Comm. Pure Appl. Math., 36 (1983), pp. 437–477. MR 0709644, 10.1002/cpa.3160360405
Reference: [4] Chang, K. C.: Morse theory on Banach space and its applications to partial differential equations., Chinese Ann. Math. Ser. B, 4 (1983), pp. 381–399. MR 0742038
Reference: [5] Chang, K. C.: Infinite dimensional Morse theory and multiple solution problems., Birkh\"auser, Boston, MA, 1993. MR 1196690
Reference: [6] Chang, K. C.: Morse theory in nonlinear analysis., in Nonlinear Functional Analysis and Applications to Differential Equations, A. Ambrosetti, K. C. Chang and I. Ekeland, eds., World Scientific Singapore, River Edge, NJ, 1998, pp. 60–101. MR 1703528
Reference: [7] Cingolani, S., Degiovanni, M., HASH(0x16f78b0), Vannella, G.: On the critical polynomial of functionals related to p-area ($1 < p < ∞$) and p-Laplace ($1 < p ≤ 2$) type operators., Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), pp. 49–56. MR 3345321
Reference: [8] Cingolani, S., Degiovanni, M., HASH(0x16f9a68), Vannella, G.: Amann-Zehnder type results for p-Laplace problems., Ann. Mat. Pura Appl., to appear. doi:10.1007/s10231-017-0694-8. MR 3772919, 10.1007/s10231-017-0694-8
Reference: [9] Cingolani, S., Lazzo, M., Vannella, G.: Multiplicity results for a quasilinear elliptic system via Morse theory., Commun. Contemp. Math., 7 (2005), pp. 227–249. MR 2140551, 10.1142/S0219199705001714
Reference: [10] Cingolani, S., Vannella, G.: Critical groups computations on a class of Sobolev Banach spaces via Morse index., Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 271–292. MR 1961517, 10.1016/S0294-1449(02)00011-2
Reference: [11] Cingolani, S., Vannella, G.: Morse index and critical groups for p-Laplace equations with critical exponents., Mediterr. J. Math., 3 (2006), pp. 495–512. MR 2274740, 10.1007/s00009-006-0093-7
Reference: [12] Cingolani, S., Vannella, G.: Multiple positive solutions for a critical quasilinear equation via Morse theory., Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 397–413. MR 2504036, 10.1016/j.anihpc.2007.09.003
Reference: [13] Cingolani, S., Vannella, G.: The Brezis-Nirenberg type problem for the p-laplacian ($1 <p < 2$): multiple positive solutions., in preparation.
Reference: [14] Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents., Nonlinear Anal., 13 (1989), pp. 879–902. MR 1009077, 10.1016/0362-546X(89)90020-5
Reference: [15] Marino, A., Prodi, G.: Metodi perturbativi nella teoria di Morse., Boll. Un. Mat. Ital., 11(1975), pp. 1–32. MR 0418150
Reference: [16] Mercuri, F., Palmieri, G.: Problems in extending Morse theory to Banach spaces., Boll. Un. Mat. Ital., 12 (1975), pp. 397–401. MR 0405494
Reference: [17] Tromba, A. J.: A general approach to Morse theory., J. Differential Geometry, 12 (1977), pp. 47–85. MR 0464304, 10.4310/jdg/1214433845
Reference: [18] Uhlenbeck, K.: Morse theory on Banach manifolds., J. Functional Analysis, 10 (1972), pp. 430–445. MR 0377979, 10.1016/0022-1236(72)90039-0
.

Files

Files Size Format View
Equadiff_14-2017-1_13.pdf 452.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo