Title:
|
Multiple positive solutions for a p-Laplace critical problem (p >1), via Morse theory (English) |
Author:
|
Vannella, Giuseppina |
Language:
|
English |
Journal:
|
Proceedings of Equadiff 14 |
Volume:
|
Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017 |
Issue:
|
2017 |
Year:
|
|
Pages:
|
89-96 |
. |
Category:
|
math |
. |
Summary:
|
We consider the quasilinear elliptic problem \[ (P_\lambda) \ \ \left\{ \begin{array}{ll} - \Delta _{p}u = \lambda u^{q-1} + u^{p^*-1} & \hbox{in} \ \Omega \\ u>0 & \hbox{in} \ \Omega \\ u=0 & \hbox{on} \ \partial \Omega \end{array} \right. \] where $\Omega$ is bounded in $\R^N$, $N \geq p^2, \, 1< p \leq q < p^*, \, p^*= \frac{Np}{N-p}%Np/(N-p) , \, \lambda >0$ is a parameter. Denoting by ${\mathcal P}_1(\O)$ the Poincar\´e polynomial of $0$, we state that, for any $p>1$, there exists $\lambda^*>0$ such that, for any $\lambda\in (0,\lambda^*)$, either $(P_\lambda)$ has at least ${\mathcal P}_1(\O)$ distinct solutions or, if not, $(P_\l)$ can be approached by a sequence of problems $(P_n)_{n \in \N}$, each having at least $(P_n)_{n \in \N}$ distinct solutions. These results have been proved in [12] only as regards the case p 2, while they will be completely proved in the forthcoming work [13] in the case $p\geq2$, while they will be completely proved in the forthcoming work \cite{cvip} in the case $p\in (1,2)$. Note that, when $p\geq2$, the Euler functional associated to $(P_\l)$ is never $C^2$, so the approach already used for $p\geq 2$ fails. This problem will be faced exploiting recent results given in [7] and [8]. (English) |
Keyword:
|
Morse theory in Banach spaces, p-laplace equations, critical exponent, critical groups, multiplicity, perturbation results, functionals with lack of smoothness, generalized Morse index |
MSC:
|
35B20 |
MSC:
|
35B33 |
MSC:
|
35J92 |
MSC:
|
58E05 |
. |
Date available:
|
2019-09-27T09:11:20Z |
Last updated:
|
2019-09-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/703021 |
. |
Reference:
|
[1] Alves, C.O., Ding, Y.H.: Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity., J. Math. Anal. Appl., 279 (2003), pp. 508–521. MR 1974041, 10.1016/S0022-247X(03)00026-X |
Reference:
|
[2] Azorero, J.G., Peral, I.: Existence and nonuniqueness for the p-Laplacian: Nonlinear eigenvalues., Comm. Partial Differential Equations, 12 (1987), pp. 1389–1430. MR 0912211 |
Reference:
|
[3] Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents., Comm. Pure Appl. Math., 36 (1983), pp. 437–477. MR 0709644, 10.1002/cpa.3160360405 |
Reference:
|
[4] Chang, K. C.: Morse theory on Banach space and its applications to partial differential equations., Chinese Ann. Math. Ser. B, 4 (1983), pp. 381–399. MR 0742038 |
Reference:
|
[5] Chang, K. C.: Infinite dimensional Morse theory and multiple solution problems., Birkh\"auser, Boston, MA, 1993. MR 1196690 |
Reference:
|
[6] Chang, K. C.: Morse theory in nonlinear analysis., in Nonlinear Functional Analysis and Applications to Differential Equations, A. Ambrosetti, K. C. Chang and I. Ekeland, eds., World Scientific Singapore, River Edge, NJ, 1998, pp. 60–101. MR 1703528 |
Reference:
|
[7] Cingolani, S., Degiovanni, M., HASH(0x16f78b0), Vannella, G.: On the critical polynomial of functionals related to p-area ($1 < p < ∞$) and p-Laplace ($1 < p ≤ 2$) type operators., Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 26 (2015), pp. 49–56. MR 3345321 |
Reference:
|
[8] Cingolani, S., Degiovanni, M., HASH(0x16f9a68), Vannella, G.: Amann-Zehnder type results for p-Laplace problems., Ann. Mat. Pura Appl., to appear. doi:10.1007/s10231-017-0694-8. MR 3772919, 10.1007/s10231-017-0694-8 |
Reference:
|
[9] Cingolani, S., Lazzo, M., Vannella, G.: Multiplicity results for a quasilinear elliptic system via Morse theory., Commun. Contemp. Math., 7 (2005), pp. 227–249. MR 2140551, 10.1142/S0219199705001714 |
Reference:
|
[10] Cingolani, S., Vannella, G.: Critical groups computations on a class of Sobolev Banach spaces via Morse index., Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), pp. 271–292. MR 1961517, 10.1016/S0294-1449(02)00011-2 |
Reference:
|
[11] Cingolani, S., Vannella, G.: Morse index and critical groups for p-Laplace equations with critical exponents., Mediterr. J. Math., 3 (2006), pp. 495–512. MR 2274740, 10.1007/s00009-006-0093-7 |
Reference:
|
[12] Cingolani, S., Vannella, G.: Multiple positive solutions for a critical quasilinear equation via Morse theory., Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 397–413. MR 2504036, 10.1016/j.anihpc.2007.09.003 |
Reference:
|
[13] Cingolani, S., Vannella, G.: The Brezis-Nirenberg type problem for the p-laplacian ($1 <p < 2$): multiple positive solutions., in preparation. |
Reference:
|
[14] Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents., Nonlinear Anal., 13 (1989), pp. 879–902. MR 1009077, 10.1016/0362-546X(89)90020-5 |
Reference:
|
[15] Marino, A., Prodi, G.: Metodi perturbativi nella teoria di Morse., Boll. Un. Mat. Ital., 11(1975), pp. 1–32. MR 0418150 |
Reference:
|
[16] Mercuri, F., Palmieri, G.: Problems in extending Morse theory to Banach spaces., Boll. Un. Mat. Ital., 12 (1975), pp. 397–401. MR 0405494 |
Reference:
|
[17] Tromba, A. J.: A general approach to Morse theory., J. Differential Geometry, 12 (1977), pp. 47–85. MR 0464304, 10.4310/jdg/1214433845 |
Reference:
|
[18] Uhlenbeck, K.: Morse theory on Banach manifolds., J. Functional Analysis, 10 (1972), pp. 430–445. MR 0377979, 10.1016/0022-1236(72)90039-0 |
. |