Previous |  Up |  Next

Article

Title: Viral infection model with diffusion and state-dependent delay: a case of logistic growth (English)
Author: Rezounenko, Alexander V.
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 53-60
.
Category: math
.
Summary: We propose a virus dynamics model with reaction-diffusion and logistic growth terms, intracellular state-dependent delay and a general non-linear infection rate functional response. Classical solutions with Lipschitz in-time initial functions are investigated. This type of solutions is adequate to the discontinuous change of parameters due to, for example, drug administration. The Lyapunov functions approach is used to analyse stability of interior infection equilibria which describe the cases of a chronic disease. (English)
Keyword: Reaction-diffusion, evolution equations, Lyapunov stability, state-dependent delay, virus infection model.
MSC: 34K20
MSC: 35K57
MSC: 93C23
MSC: 97M60
.
Date available: 2019-09-27T07:38:13Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703023
.
Reference: [1] Beddington, J. R.: Mutual interference between parasites or predators and its effect on searching efficiency., J. Animal Ecology, 44 (1975), pp. 331-340. 10.2307/3866
Reference: [2] Chueshov, I. D., Rezounenko, A. V.: Finite-dimensional global attractors for parabolic nonlinear equations with state-dependent delay., Comm. Pure Appl. Anal., 14/5 (2015), pp. 1685-1704. MR 3359540, 10.3934/cpaa.2015.14.1685
Reference: [3] DeAngelis, D. L., Goldstein, R. A., O’Neill, R. V.: A model for tropic interaction., Ecology, 56 (1975), pp.881–892. 10.2307/1936298
Reference: [4] Hale, J. K.: Theory of Functional Differential Equations., Springer, Berlin- Heidelberg-New York, 1977. MR 0508721
Reference: [5] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: Theory and applications., In: Canada, A., Drábek, P. and A. Fonda (Eds.) Handbook of Differential Equations, Ordinary Differential Equations, Elsevier Science B.V., North Holland, 3 (2006), pp. 435–545. MR 2457636
Reference: [6] Hews, S., Eikenberry, S., Nagy, J.D.: Rich dynamics of a hepatitis B viral infection model with logistic hepatocyte growth., J. Math. Biology, Volume 60, Issue 4, (2010), pp. 573-590. MR 2587590, 10.1007/s00285-009-0278-3
Reference: [7] Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence., Bull. Math. Biol., 69 (2007), pp. 1871-1886. MR 2329184, 10.1007/s11538-007-9196-y
Reference: [8] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics., Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993. MR 1218880
Reference: [9] Lyapunov, A. M.: The General Problem of the Stability of Motion., Kharkov Mathematical Society, Kharkov, 1892, 251p. MR 1229075
Reference: [10] Martin, R. H., Jr., Smith, H. L.: Abstract functional-differential equations and reaction-diffusion systems., Trans. Amer. Math. Soc., 321 (1990), pp. 1-44. MR 0967316
Reference: [11] McCluskey, C., Yang, Yu.: Global stability of a diffusive virus dynamics model with general incidence function and time delay., Nonlinear Anal. Real World Appl., 25 (2015), pp. 64-78. MR 3351011, 10.1016/j.nonrwa.2015.03.002
Reference: [12] Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses., Science, 272 (1996), pp. 74-79. 10.1126/science.272.5258.74
Reference: [13] Pazy, A.: Semigroups of linear operators and applications to partial differential equations., Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. viii+279 pp. MR 0710486
Reference: [14] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time., Science, 271 (1996), pp. 1582-1586. 10.1126/science.271.5255.1582
Reference: [15] Rezounenko, A. V.: Partial differential equations with discrete and distributed state-dependent delays., J. Math. Anal. Appl., 326 (2007), pp. 1031-1045. MR 2280961, 10.1016/j.jmaa.2006.03.049
Reference: [16] Rezounenko, A. V.: Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions., Nonlinear Analysis: Theory, Methods and Applications, 70 (2009), pp. 3978-3986. MR 2515314, 10.1016/j.na.2008.08.006
Reference: [17] Rezounenko, A. V.: Non-linear partial differential equations with discrete state-dependent delays in a metric space., Nonlinear Analysis: Theory, Methods and Applications, 73 (2010), pp. 1707-1714. MR 2661353, 10.1016/j.na.2010.05.005
Reference: [18] Rezounenko, A. V.: A condition on delay for differential equations with discrete state dependent delay., J. Math. Anal. Appl., 385 (2012), pp. 506-516. MR 2834276, 10.1016/j.jmaa.2011.06.070
Reference: [19] Rezounenko, A. V., Zagalak, P.: Non-local PDEs with discrete state-dependent delays: wellposedness in a metric space., Discrete and Continuous Dynamical Systems - Series A, 33:2(2013), pp. 819-835. MR 2975136
Reference: [20] Rezounenko, A. V.: Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses., Discrete and Continuous Dynamical Systems - Series B, Vol. 22 (2017), pp. 1547-1563; Preprint arXiv:1603.06281v1 [math.DS], 20 March 2016, arxiv.org/abs/1603.06281v1. MR 3639177
Reference: [21] Rezounenko, A. V.: Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses., Electron. J. Qual. Theory Differ. Equ., 79 (2016), pp. 1-15. MR 3547455, 10.14232/ejqtde.2016.1.79
Reference: [22] Rezounenko, A. V.: Viral infection model with diffusion and state-dependent delay: stability of classical solutions., Discrete and Continuous Dynamical Systems - Series B, Vol. 23, No. 3, May 2018, to appear; Preprint arXiv:1706.08620 [math.DS], 26 Jun 2017, arxiv.org/abs/1706.08620. MR 3810110
Reference: [23] Smith, H. L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems., Mathematical Surveys and Monographs, 41. American Mathematical Society, Providence, RI, 1995. MR 1319817
Reference: [24] Smith, H.: An Introduction to Delay Differential Equations with Sciences Applications to the Life., Texts in Applied Mathematics, vol. 57, Springer, New York, Dordrecht, Heidelberg, London, 2011. MR 2724792, 10.1007/978-1-4419-7646-8
Reference: [25] Organization, World Health: Global hepatitis report-2017., April 2017, ISBN: 978-92-4156545-5; apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf?ua=1
.

Files

Files Size Format View
Equadiff_14-2017-1_9.pdf 412.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo