Previous |  Up |  Next

Article

Title: Nonlinear diffusion equations with perturbation terms on unbounded domains (English)
Author: Kurima, Shunsuke
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 37-44
.
Category: math
.
Summary: This paper considers the initial-boundary value problem for the nonlinear diffusion equation with the perturbation term $$ u_t + (-\Delta+1)\beta(u) + G(u) = g \quad \mbox{in}\ \Omega\times(0, T) $$ in an unbounded domain $\Omega \subset \mathbb{R}^N$ with smooth bounded boundary, where $N \in \mathbb{N}$, $T>0$, $\beta$, is a single-valued maximal monotone function on $\mathbb{R}$, e.g., $$ \beta(r) = |r|^{q-1}r\ (q > 0, q\neq1) $$ and $G$ is a function on $\mathbb{R}$ which can be regarded as a Lipschitz continuous operator from $(H^1(\Omega))^{*}$ to $(H^1(\Omega))^{*}$. The present work establishes existence and estimates for the above problem. (English)
Keyword: Porous media equations, fast diffusion equations, subdifferential operators
MSC: 35K35
MSC: 35K59
MSC: 47H05
.
Date available: 2019-09-27T09:10:52Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703024
.
Reference: [1] Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn–Hilliard, Allen–Cahn and porous medium equations., J. Differential Equations, 261 (2016), pp. 2935–2985. MR 3527619, 10.1016/j.jde.2016.05.016
Reference: [2] Blanchard, D., Porretta, A.: Stefan problems with nonlinear diffusion and convection., J. Differential Equations, 210 (2005), pp. 383–428. MR 2119989, 10.1016/j.jde.2004.06.012
Reference: [3] Brézis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Especes de Hilbert., North-Holland, Amsterdam, 1973. MR 0348562
Reference: [4] Damlamian, A.: Some results on the multi-phase Stefan problem., Comm. Partial Differential Equations, 2 (1977), pp. 1017–1044. MR 0487015, 10.1080/03605307708820053
Reference: [5] DiBenedetto, E.: Continuity of weak solutions to a general porous medium equation., Indiana Univ. Math. J., 32 (1983), pp. 83–118. MR 0684758, 10.1512/iumj.1983.32.32008
Reference: [6] Friedman, A.: The Stefan problem in several space variables., Trans. Amer. Math. Soc., 133 (1968), pp. 51–87. MR 0227625, 10.1090/S0002-9947-1968-0227625-7
Reference: [7] Fukao, T., Kenmochi, N., Pawlow, I.: Transmission problems arising in Czochralski process of crystal growth., Mathematical aspects of modelling structure formation phenomena (Bȩdlewo/Warsaw, 2000), pp. 228–243, GAKUTO Internat. Ser. Math. Sci. Appl., 17, Gakkötosho, Tokyo, 2001. MR 1932116
Reference: [8] Fukao, T.: Convergence of Cahn–Hilliard systems to the Stefan problem with dynamic boundary conditions., Asymptot. Anal., 99 (2016), pp. 1–21. MR 3541824, 10.3233/ASY-161373
Reference: [9] Fukao, T., Kurima, S., Yokota, T.: Nonlinear diffusion equations as asymptotic limits of Cahn–Hilliard systems on unbounded domains via Cauchy’s criterion., preprint. MR 3790712
Reference: [10] Haraux, A., Kenmochi, N.: Asymptotic behaviour of solutions to some degenerate parabolic equations., Funkcial. Ekvac., 34 (1991), pp. 19–38. MR 1116879
Reference: [11] Kenig, C. E.: Degenerate Diffusions., Initial value problems and local regularity theory. EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich, 2007. MR 2338118
Reference: [12] Kurima, S., Yokota, T.: Monotonicity methods for nonlinear diffusion equations and their approximations with error estimates., J. Differential Equations, 263 (2017), pp. 2024–2050. MR 3650332, 10.1016/j.jde.2017.03.040
Reference: [13] Marinoschi, G.: Well-posedness of singular diffusion equations in porous media with homogeneous Neumann boundary conditions., Nonlinear Anal., 72 (2010), pp. 3491–3514. MR 2587381, 10.1016/j.na.2009.12.033
Reference: [14] Okazawa, N., Suzuki, T., Yokota, T.: Energy methods for abstract nonlinear Schrödinger equations., Evol. Equ. Control Theory, 1 (2012), pp. 337–354. MR 3085232, 10.3934/eect.2012.1.337
Reference: [15] Rodriguez, A., Vázquez, J. L.: Obstructions to existence in fast-diffusion equations., J. Differential Equations, 184 (2002), pp. 348–385. MR 1929882, 10.1006/jdeq.2001.4144
Reference: [16] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations., Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997. MR 1422252
Reference: [17] Vázquez, J. L.: The Porous Medium Equation., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. MR 2286292
Reference: [18] Yin, H.-M.: On a degenerate parabolic system., J. Differential Equations, 245 (2008), pp. 722–736. MR 2422525, 10.1016/j.jde.2008.03.017
.

Files

Files Size Format View
Equadiff_14-2017-1_7.pdf 419.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo