Previous |  Up |  Next


MSC: 35A01, 35Q74, 74C10
Viscoplasticity, coercive approximation, Yosida approximation, safe-load condition, mixed boundary condition
This paper discusses the existence theory to dynamical model of viscoplasticity and show possibility to obtain existence of solution without assuming weak safe-load condition.
[1] Alber, H.-D.: Materials with memory. Lecture Notes in Mathematics, vol. 1682, Springer Verlag, Berlin, 1998. MR 1619546
[2] Aubin, J.-P., Cellina, A.: Differential inclusions. volume 264 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer Verlag, Berlin, 1984. MR 0755330
[3] Chelmiński, K.: Coercive approximation of viscoplasticity and plasticity. Asymptotic Anal., 26(2), pp. 105–133, 2001. MR 1832581
[4] Kisiel, K.: Dynamical poroplasticity model – Existence theory for gradient type nonlinearities with Lipschitz perturbations. J. Math. Anal. Appl., 450(1), pp. 544–577, 2017. DOI 10.1016/j.jmaa.2017.01.045 | MR 3606182
[5] Kisiel, K., Kosiba, K.: Dynamical poroplasticity model with mixed boundary conditions – theory for LM-type nonlinearity. J. Math. Anal. Appl., 443(1), pp. 187–229, 2016. DOI 10.1016/j.jmaa.2016.05.013 | MR 3508486
[6] Owczarek, S.: Existence of solution to a non-monotone dynamic model in poroplasticity withmixed boundary conditions. Topol. Methods Nonlinear Anal., 43(2), pp. 297–322, 2014. DOI 10.12775/TMNA.2014.018 | MR 3236971
Partner of
EuDML logo