Previous |  Up |  Next


Multiscale method, wave propagation, Maxwell’s equations, finite element method
In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems, arXiv:1706.02966, 2017] to the case of indefinite problems. In particular, this requires a careful analysis of the well-posedness of the corrector problems as well as the numerical homogenization scheme.
[1] Abdulle, A., Henning, P.: Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp., 86 (2017), pp. 549–587. DOI 10.1090/mcom/3114 | MR 3584540
[2] Babuška, I. M., Sauter, S. A.: Is the pollution effect avoidable for the Helmholtz equation considering high wave numbers?. SIAM Rev., 42 (2000), pp. 451–484. MR 1786934
[3] Jr., P. Ciarlet, Fliss, S., HASH(0x2ad2750), Stohrer, C.: On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell’s equations, Comput. Math. Appl., 73 (2017), pp. 1900–1919. DOI 10.1016/j.camwa.2017.02.043 | MR 3634959
[4] Falk, R. S., Winther, R.: Local bounded cochain projections. Math. Comp., 83 (2014), pp. 2631–2656. DOI 10.1090/S0025-5718-2014-02827-5 | MR 3246803
[5] Gallistl, D., Henning, P., HASH(0x2ad4f60), Verf\"urth, B.: Numerical homogenization of H(curl)-problems. arXiv:1706.02966 (2017), preprint. MR 3810505
[6] Gallistl, D., Peterseim, D.: Stable multiscale Petrov-Galerkin finite element method for high frequency acoustic scattering. Comp. Appl. Mech. Eng., 295 (2015), pp. 1–17. DOI 10.1016/j.cma.2015.06.017 | MR 3388822
[7] Hellman, F., P.Henning, HASH(0x2ad7fe0), M{\aa}lqvist, A.: Multiscale mixed finite elements. Discr. Contin. Dyn. Syst. Ser. S, 9 (2016), pp. 1269–1298. DOI 10.3934/dcdss.2016051 | MR 3591945
[8] Henning, P., M{\aa}lqvist, A.: Localized orthogonal decomposition techniques for boundary value problems. SIAM J. Sci. Comput., 36 (2014), pp. A1609–A1634. DOI 10.1137/130933198 | MR 3240855
[9] Henning, P., Ohlberger, M., HASH(0x2adb738), Verf\"urth, B.: A new Heterogeneous Multiscale Method for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal., 54 (2016), pp. 3493–3522. DOI 10.1137/15M1039225 | MR 3578028
[10] Henning, P., Ohlberger, M., HASH(0x2adc158), Verf\"urth, B.: Analysis of multiscale methods for time harmonic Maxwell’s equations. Pro. Appl. Math. Mech., 16 (2016), pp. 559–560. DOI 10.1002/pamm.201610268 | MR 3578028
[11] Hiptmair, R.: Maxwell equations: continuous and discrete. in Computational Electromagnetism, A. Bermúdez de Castro and A. Valli, eds., Lecture Notes in Mathematics, Springer, Cham, 2015, pp. 1–58. MR 3382059
[12] M{\aa}lqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comp., 83 (2014), pp. 2583–2603. DOI 10.1090/S0025-5718-2014-02868-8 | MR 3246801
[13] Moiola, A.: Trefftz-Discontinuous Galerkin methods for time-harmonic wave problems. PhD thesis, ETH Z\"urich, 2011.
[14] Monk, P.: Finite element methods for Maxwell’s equation. Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447
[15] Ohlberger, M., Verf\"urth, B.: Localized Orthogonal Decomposition for two-scale Helmholtz-type problems. AIMS Mathematics, 2 (2017), pp. 458–478. DOI 10.3934/Math.2017.2.458
[16] Peterseim, D.: Eliminating the pollution effect by local subscale correction. Math. Comp., 86(2017), pp. 1005–1036. DOI 10.1090/mcom/3156 | MR 3614010
[17] Wellander, N., Kristensson, G.: Homogenization of the Maxwell equations at fixed frequency. AIAM J. Appl. Math., 64 (2003), pp. 170–195. DOI 10.1137/S0036139902403366 | MR 2029130
Partner of
EuDML logo