[1] Aln{\ae}s, M.M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS Project Version 1.5.  Archive of Numerical Software, 2015.
[2] Babuška, I.: Private communication.  Austin 2017.
[3] Bartoš, O.: Discontinuous Galerkin method for the solution of boundary-value problems in nonsmooth domains.  Master Thesis, Faculty of Mathematics and Physics, Charles University, Praha 2017.
[4] Ciarlet, P.G.: 
The Finite Element Method for Elliptic Problems.  North Holland, Amsterdam, 1978. 
MR 0520174 | 
Zbl 0547.65072[5] Feistauer, M., Roskovec, F., Sandig, A.-M.: 
Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon.  IMA J. Numer. Anal. (to appear). 
MR 3903559[7] Ganesh, M., Steinbach, O.: 
Nonlinear boundary integral equations for harmonic problems.  Journal of Integral Equations and Applications 11 (1999), 437–459. 
DOI 10.1216/jiea/1181074294 | 
MR 1738277[8] Harriman, K., Houston, P., Senior, B., Suli, E.: 
hp-Version Discontinuous Galerkin Methods with Interior Penalty for Partial Differential Equations with Nonnegative Characteristic Form.  Contemporary Mathematics Vol. 330, pp. 89-119, AMS, 2003. 
DOI 10.1090/conm/330/05886 | 
MR 2011714[9] Křížek, M., Liu, L., Neittaanmäki, P.: 
Finite element analysis of a nonlinear elliptic problem with a pure radiation condition.  In: Proc. Conf. devoted to the 70th birthday of Prof. J. Nečas, Lisbon, 1999. 
MR 1727454[10] Liu, L., Křížek, M.: Finite element analysis of a radiation heat transfer problem.  J. Comput. Math. 16 (1998), 327–336.
[11] Moreau, R., Ewans, J. W.: 
An analysis of the hydrodynamics of alluminium reduction cells.  J. Electrochem. Soc. 31 (1984), 2251–2259. 
DOI 10.1149/1.2115235[12] Pick, L., Kufner, A., John, O., Fučík, S.: 
Function Spaces.  De Gruyter Series in Nonlinear Analysis and Applications 14, Berlin, 2013. 
MR 3024912[13] Rudin, W.: 
Real and comples analysis.  McGraw-Hill, 1987. 
MR 0924157