Previous |  Up |  Next

Article

Title: Singularly perturbed set of periodic functional-differential equations arising in optimal control theory (English)
Author: Glizer, Valery Y.
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 147-156
.
Category: math
.
Summary: We consider the singularly perturbed set of periodic functional-differential matrix Riccati equations, associated with a periodic linear-quadratic optimal control problem for a singularly perturbed delay system. The delay is small of order of a small positive multiplier for a part of the derivatives in the system. A zero-order asymptotic solution to this set of Riccati equations is constructed and justified. (English)
Keyword: Periodic linear-quadratic optimal control problem, singularly perturbed delay system, small delay, periodic functional-differential matrix Riccati equations, asymptotic solution
MSC: 34H05
MSC: 34K13
MSC: 34K26
MSC: 35F50
.
Date available: 2019-09-27T07:50:41Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703045
.
Reference: [1] Bittanti, S., Locatelli, A., Maffezzoni, C.: Second-variation methods in periodic optimization., J. Optim. Theory Appl., 14 (1974), pp. 31–48. MR 0350565, 10.1007/BF00933173
Reference: [2] Curtain, R. F., Pritchard, A. J.: Infinite Dimensional Linear System Theory., Lecture Notes in Control and Information Sciences, Vol. 8, Springer-Verlag, New York, NY, 1978. MR 0516812
Reference: [3] Prato, G. Da, Ichikawa, A.: Quadratic control of linear periodic systems., Appl. Math. Optim., 18 (1988), pp. 39–66. MR 0928209, 10.1007/BF01443614
Reference: [4] Datko, R.: A linear control problem in an abstract Hilbert space., J. Differential Equations, 9(1971), pp. 346–359. MR 0273488, 10.1016/0022-0396(71)90087-8
Reference: [5] Delfour, M. C.: The linear quadratic optimal control problem for hereditary differential systems: theory and numerical solution., Appl. Math. Optim., 3 (1976), pp. 101–162. MR 0444189, 10.1007/BF01441963
Reference: [6] Delfour, M. C.: The linear-quadratic optimal control problem with delays in state and control variables: a state space approach., SIAM J. Control Optim., 24 (1986), pp. 835–883. MR 0854061, 10.1137/0324053
Reference: [7] Delfour, M. C., McCalla, C., Mitter, S. K.: Stability and the infinite-time quadratic cost problem for linear hereditary differential systems., SIAM J. Control, 13 (1975), pp. 48–88. MR 0405216, 10.1137/0313004
Reference: [8] Delfour, M. C., Mitter, S. K.: Controllability, observability and optimal feedback control of affine hereditary differential systems., SIAM J. Control, 10 (1972), pp. 298–328. MR 0309587, 10.1137/0310023
Reference: [9] Dmitriev, M. G.: On singular perturbations in a linear periodic optimal control problem with a quadratic functional., in Proceedings of the 8th International Conference on Nonlinear Oscillations, Prague, 1978, pp. 861-866, (in Russian).
Reference: [10] Glizer, V. Y.: Infinite horizon quadratic control of linear singularly perturbed systems with small state delays: an asymptotic solution of Riccati-type equations.. IMA J. Math. Control Inform., 24 (2007), pp. 435–459. MR 2394246, 10.1093/imamci/dnl035
Reference: [11] Glizer, V. Y.: Linear-quadratic optimal control problem for singularly perturbed systems with small delays., in Nonlinear Analysis and Optimization II, A. Leizarowitz, B. S. Mordukhovich, I. Shafrir and A. J. Zaslavski, eds., Contemporary Mathematics Series, Vol. 514, American Mathematical Society, Providence, RI, 2010, pp. 155–188. MR 2668260
Reference: [12] Glizer, V. Y.: Stochastic singular optimal control problem with state delays: regularization, singular perturbation, and minimizing sequence., SIAM J. Control Optim., 50 (2012), pp. 2862–2888. MR 3022090, 10.1137/110852784
Reference: [13] Glizer, V. Y.: Dependence on parameter of the solution to an infinite horizon linear-quadratic optimal control problem for systems with state delays.. Pure Appl. Funct. Anal., 2 (2017), pp. 259–283. MR 3656266
Reference: [14] Glizer, V. Y., Dmitriev, M. G.: Singular perturbations in a linear control problem with a quadratic functional., Differ. Equ., 11 (1975), pp. 1427–1432. MR 0399992
Reference: [15] Glizer, V. Y., Dmitriev, M. G.: Asymptotic properties of the solution of a singularly perturbed Cauchy problem encountered in optimal control theory., Differ. Equ., 14 (1978), pp. 423–432. MR 0491616
Reference: [16] Kalman, R. E.: Contribution to the theory of optimal control., Bol. Soc. Mat. Mex., 5 (1960), pp. 102–119. MR 0127472
Reference: [17] Kokotovic, P. V., Yackel, R. A.: Singular perturbation of linear regulators: basic theorems., IEEE Trans. Automat. Control, 17 (1972), pp. 29–37. MR 0346634, 10.1109/TAC.1972.1099851
Reference: [18] Kolmanovskii, V. B., Maizenberg, T. L.: Optimal control of stochastic systems with aftereffect., Autom. Remote Control, 34 (1973), pp. 39–52. MR 0459886
Reference: [19] Kushner, H. J., Barnea, D. I.: On the control of a linear functional-differential equation with quadratic cost., SIAM J. Control, 8 (1970), pp. 257–272. MR 0265716, 10.1137/0308019
Reference: [20] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations., Springer Verlag, New York, NY, 1971. MR 0271512
Reference: [21] O’Malley, R. E., Kung, C. F.: On the matrix Riccati approach to a singularly perturbed regulator problem., J. Differential Equations, 16 (1974), pp. 413–427. MR 0420391, 10.1016/0022-0396(74)90002-3
Reference: [22] Osintcev, M., Sobolev, V.: Regularization of the matrix Riccati equation in optimal estimation problem with low measurement noise., J. Phys.: Conf. Ser., 811 (2017), pp. 1–6. MR 3785344
Reference: [23] Vinter, R. B., Kwong, R. H.: The infinite time quadratic control problem for linear systems with state and control delays: an evolution equation approach., SIAM J. Control Optim., 19 (1981), pp. 139–153. MR 0603086, 10.1137/0319011
Reference: [24] Yackel, R. A., Kokotovic, P. V.: A boundary layer method for the matrix Riccati equation., IEEE Trans. Automat. Control, 18 (1973), pp. 17–24. MR 0490196, 10.1109/TAC.1973.1100226
.

Files

Files Size Format View
Equadiff_14-2017-1_19.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo