[1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.:
Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663–1763.
DOI 10.1142/S021820251550044X |
MR 3351175
[2] Biler, P., Karch, G., cot, P. Lauren\c, Nadzieja, T.:
The $8\pi$-problem for radially symmetric solutions of a chemotaxis model in a disc. Topol. Methods Nonlinear Anal. 27 (2006), 133–147.
MR 2236414
[3] Biler, P., Nadzieja, T.:
Existence and nonexistence of solutions for a model of gravitational interaction of particles. I. Colloq. Math. 66 (1994), 319–334.
DOI 10.4064/cm-66-2-319-334 |
MR 1268074
[4] Cao, X.:
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904.
DOI 10.3934/dcds.2015.35.1891 |
MR 3294230
[6] Fujie, K., Senba, T.:
Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete Contin. Dyn. Syst. Ser. B 21 (2016), 81–102.
MR 3426833
[7] Fujie, K., Senba, T.:
Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity. Nonlinearity 29 (2016), 2417–2450.
DOI 10.1088/0951-7715/29/8/2417 |
MR 3538418
[8] Fujie, K., Senba, T.:
Application of an Adams type inequality to a two-chemical substances chemotaxis system. J. Differential Equations 263 (2017), 88–148.
DOI 10.1016/j.jde.2017.02.031 |
MR 3631302
[9] Fujie, K., Senba, T.:
Blow-up of solutions to a two-chemical substances chemotaxis system in the critical dimension. In preparation.
MR 3906204
[10] Gajewski, H., Zacharias, K.:
On a reaction-diffusion system modelling chemotaxis. International Conference on Differential Equations, Vol. 1, 2 (Berlin 1999), 1098–1103, World Sci. Publ., River Edge, NJ, 2000.
MR 1870292
[11] Herrero, M.A, Velázquez, J.J.L.:
A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 663–683.
MR 1627338
[13] Horstmann, D.:
On the existence of radially symmetric blow-up solutions for the Keller-Segel model. J. Math. Biol. 44 (2002), 463–478.
DOI 10.1007/s002850100134 |
MR 1908133
[14] Horstmann, D.:
From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105 (2003), 103–165.
MR 2013508
[18] Nagai, T.:
Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5 (1995), 581–601.
MR 1361006
[19] Nagai, T., Senba, T., Yoshida, K.:
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvacioj, Ser. Int. 40 (1997), 411–433.
MR 1610709
[20] Osaki, K., Yagi, A.:
Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcial. Ekvac. 44 (2001), 441–469.
MR 1893940
[22] Sugiyama, Y.:
On $\varepsilon$-regularity theorem and asymptotic behaviors of solutions for Keller-Segel systems. SIAM J. Math. Anal. 41 (2009), 1664–1692.
DOI 10.1137/080721078 |
MR 2556579
[23] Senba, T., Suzuki, T.:
Chemotactic collapse in a parabolic-elliptic system of mathematical biology. Adv. Differential Equations 6 (2001), 21–50.
MR 1799679