92 Biology and other natural sciences
92Cxx Physiological, cellular and medical topics (
3 articles)
 
92C17 Cell movement (chemotaxis, etc.) (14 articles) 
- 
Li, Yanjiang; Yu, Zhongqing; Huang, Yumei:
		Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 74
			(2024),
			issue 1,
		pp. 153-175
- 
Zhao, Xiangdong:
		Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 74
			(2024),
			issue 1,
		pp. 127-151
- 
Yang, Lu; Liu, Xi; Hou, Zhibo:
		Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 73
			(2023),
			issue 1,
		pp. 49-70
- 
Tanaka, Yuya:
		Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source.
		
			(English).
Archivum Mathematicum,
		vol. 59
			(2023),
			issue 2,
		pp. 223-230
- 
Mizukami, Masaaki; Tanaka, Yuya:
		Finite-time blow-up in a two-species chemotaxis-competition model with single production.
		
			(English).
Archivum Mathematicum,
		vol. 59
			(2023),
			issue 2,
		pp. 215-222
- 
Chiyo, Yutaro:
		Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system.
		
			(English).
Archivum Mathematicum,
		vol. 59
			(2023),
			issue 2,
		pp. 163-171
- 
Ishida, Sachiko; Yokota, Tomomi:
		Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems.
		
			(English).
Archivum Mathematicum,
		vol. 59
			(2023),
			issue 2,
		pp. 181-189
- 
- 
- 
- 
Liu, Ji; Zheng, Jia-Shan:
		Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source.
		
			(English).
Czechoslovak Mathematical Journal,
		vol. 65
			(2015),
			issue 4,
		pp. 1117-1136
- 
Fujie, Kentarou; Yokota, Tomomi:
		Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity.
		
			(English).
Mathematica Bohemica,
		vol. 139
			(2014),
			issue 4,
		pp. 639-647
- 
Suzuki, Takashi:
		Mathematical models of tumor growth systems.
		
			(English).
Mathematica Bohemica,
		vol. 137
			(2012),
			issue 2,
		pp. 201-218
- 
Perthame, Benoît:
		PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic.
		
			(English).
Applications of Mathematics,
		vol. 49
			(2004),
			issue 6,
		pp. 539-564