92 Biology and other natural sciences
92Cxx Physiological, cellular and medical topics (
3 articles)
92C17 Cell movement (chemotaxis, etc.) (14 articles)
-
Li, Yanjiang; Yu, Zhongqing; Huang, Yumei:
Global classical solutions in a self-consistent chemotaxis(-Navier)-Stokes system.
(English).
Czechoslovak Mathematical Journal,
vol. 74
(2024),
issue 1,
pp. 153-175
-
Zhao, Xiangdong:
Global solvability in the parabolic-elliptic chemotaxis system with singular sensitivity and logistic source.
(English).
Czechoslovak Mathematical Journal,
vol. 74
(2024),
issue 1,
pp. 127-151
-
Yang, Lu; Liu, Xi; Hou, Zhibo:
Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production.
(English).
Czechoslovak Mathematical Journal,
vol. 73
(2023),
issue 1,
pp. 49-70
-
Tanaka, Yuya:
Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source.
(English).
Archivum Mathematicum,
vol. 59
(2023),
issue 2,
pp. 223-230
-
Mizukami, Masaaki; Tanaka, Yuya:
Finite-time blow-up in a two-species chemotaxis-competition model with single production.
(English).
Archivum Mathematicum,
vol. 59
(2023),
issue 2,
pp. 215-222
-
Chiyo, Yutaro:
Large time behavior in a quasilinear parabolic-parabolic-elliptic attraction-repulsion chemotaxis system.
(English).
Archivum Mathematicum,
vol. 59
(2023),
issue 2,
pp. 163-171
-
Ishida, Sachiko; Yokota, Tomomi:
Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems.
(English).
Archivum Mathematicum,
vol. 59
(2023),
issue 2,
pp. 181-189
-
-
-
-
Liu, Ji; Zheng, Jia-Shan:
Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source.
(English).
Czechoslovak Mathematical Journal,
vol. 65
(2015),
issue 4,
pp. 1117-1136
-
Fujie, Kentarou; Yokota, Tomomi:
Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity.
(English).
Mathematica Bohemica,
vol. 139
(2014),
issue 4,
pp. 639-647
-
Suzuki, Takashi:
Mathematical models of tumor growth systems.
(English).
Mathematica Bohemica,
vol. 137
(2012),
issue 2,
pp. 201-218
-
Perthame, Benoît:
PDE models for chemotactic movements: Parabolic, hyperbolic and kinetic.
(English).
Applications of Mathematics,
vol. 49
(2004),
issue 6,
pp. 539-564