[1] Anada, K., Fukuda, I., Tsutsumi, M.:
Regional blow-up and decay of solutions to the Initial-Boundary value problem for $u_t = uu_{xx} − \gamma(u_x)^2 + ku^2$. Funkcialaj Ekvacioj, 39 (1996), pp. 363–387.
MR 1433906
[2] Anada, K., Ishiwata, T.:
Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation. J. Differential Equations, 262 (2017), pp. 181–271.
DOI 10.1016/j.jde.2016.09.023 |
MR 3567485
[3] Anada, K., Ishiwata, T., Ushijima, T.:
A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm. to appear in Japan J. Ind. Appl. Math.
MR 3768236
[8] Berger, M., Kohn, R. V.:
A rescaling algorithm for the numerical calculation of blowing-up solutions. Cmmm. Pure Appl. Math., 41 (1988), pp. 841–863.
DOI 10.1002/cpa.3160410606 |
MR 0948774
[9] Friedman, A., McLeod, B.:
Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Rational Mech. Anal., 96 (1987), pp. 55–80.
DOI 10.1007/BF00251413 |
MR 0853975
[10] Ishiwata, T., Yazaki, S.:
On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion. J. Comput. Appl. Math., 159 (2003), pp. 55–64.
DOI 10.1016/S0377-0427(03)00556-9 |
MR 2022315
[11] Watterson, P. A.: Force-free magnetic evolution in the reversed-field pinch. Thesis, Cambridge University (1985).