Previous |  Up |  Next

Article

MSC: 35B44, 35K59, 65M99
Keywords:
Blow-up rate, type II blow-up, numerical estimate, scale invariance, rescaling algorithm, curvature flow
Summary:
In this paper, we consider the blow-up solutions for a quasilinear parabolic partial differential equation $u_t = u^2(u_{xx}+u)$. We numerically investigate the blow-up rates of these solutions by using a numerical method which is recently proposed by the authors [3].
References:
[1] Anada, K., Fukuda, I., Tsutsumi, M.: Regional blow-up and decay of solutions to the Initial-Boundary value problem for $u_t = uu_{xx} − \gamma(u_x)^2 + ku^2$. Funkcialaj Ekvacioj, 39 (1996), pp. 363–387. MR 1433906
[2] Anada, K., Ishiwata, T.: Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation. J. Differential Equations, 262 (2017), pp. 181–271. DOI 10.1016/j.jde.2016.09.023 | MR 3567485
[3] Anada, K., Ishiwata, T., Ushijima, T.: A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm. to appear in Japan J. Ind. Appl. Math. MR 3768236
[5] Andrews, B.: Singularities in crystalline curvature flows. Asian J. Math., 6 (2002), pp. 101–122. DOI 10.4310/AJM.2002.v6.n1.a6 | MR 1902649
[6] Angenent, S. B.: On the formation of singularities in the curve shortening flow. J. Diff. Geo. 33 (1991), pp. 601–633. DOI 10.4310/jdg/1214446558 | MR 1100205
[7] Angenent, S. B., Velázquez, J. J. L.: Asymptotic shape of cusp singularities in curve shortening. Duke Math. J., 77 (1995), pp. 71–110. DOI 10.1215/S0012-7094-95-07704-7 | MR 1317628
[8] Berger, M., Kohn, R. V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Cmmm. Pure Appl. Math., 41 (1988), pp. 841–863. DOI 10.1002/cpa.3160410606 | MR 0948774
[9] Friedman, A., McLeod, B.: Blow-up of solutions of nonlinear degenerate parabolic equations. Arch. Rational Mech. Anal., 96 (1987), pp. 55–80. DOI 10.1007/BF00251413 | MR 0853975
[10] Ishiwata, T., Yazaki, S.: On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion. J. Comput. Appl. Math., 159 (2003), pp. 55–64. DOI 10.1016/S0377-0427(03)00556-9 | MR 2022315
[11] Watterson, P. A.: Force-free magnetic evolution in the reversed-field pinch. Thesis, Cambridge University (1985).
[12] Winkler, M.: Blow-up in a degenerate parabolic equation. Indiana Univ. Math. J., 53 (2004), pp. 1415–1442. DOI 10.1512/iumj.2004.53.2451 | MR 2104284
Partner of
EuDML logo