[1] Ambrosio, L., Crasta, G., Cicco, V. De, Philippis, G. De:
A nonautonomous chain rule in $W^{1,p}$ and BV. Manuscripta Math. 140 (2013) no.3, 461–480.
MR 3019135
[2] Ambrosio, L., Fusco, N., Pallara, D.:
Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications, (2000).
MR 1857292
[4] Chen, G. Q., Karlsen, K. H.:
Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal., 4 (2005), 241–266.
DOI 10.3934/cpaa.2005.4.241 |
MR 2149515
[5] Chen, G. Q., B.:
Perthame, Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(4) (2003), 645–668.
DOI 10.1016/S0294-1449(02)00014-8 |
MR 1981403
[6] Evans, L. C., Gariepy, R.:
Measure theory and fine properties of functions. Studies in Advanced Math., CRC Press, London, (1992).
MR 1158660
[7] Karlsen, K. H., Risebro, N. H.:
On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete Contin. Dyn., 9(5) (2003),1081–1104.
MR 1974417
[9] Vol’pert, A. I., Hudjaev, S. I.:
Cauchy’s problem for degenerate second order quasi-linear parabolic equations. Math. USSR-Sb., 7 (1969), 365-387.
DOI 10.1070/SM1969v007n03ABEH001095
[10] Watanabe, H.:
Entropy solutions to strongly degenerate parabolic equations with zero-flux boundary conditions. Adv. Math. Sci. Appl., 23 (2013), no. 1, 209–234.
MR 3155452
[11] Watanabe, H.:
Strongly degenerate parabolic equations with variable coefficients. Adv. Math. Sci. Appl., 26 (2017), 143–173.
MR 3821859
[12] Watanabe, H., Oharu, S.:
BV-entropy solutions to strongly degenerate parabolic equations. Adv. Differential Equations 15(7-8) (2010), 757–800.
MR 2650587
[13] Watanabe, H., Oharu, S.:
Finite-difference approximations to a class of strongly degenerate parabolic equations. Adv. Math. Sci. Appl., 20 (2010), no. 2, 319–347.
MR 2815744
[14] Ziemer, W. P.:
Weakly differentiable functions. Springer-Verlag, New York, (1989).
MR 1014685