[1] Boichenko, V. A., Leonov, G. A., Reitmann, V.:
Dimension Theory for Ordinary Differential Equations. Wiesbaden:Vieweg-Teubner Verlag, 2005.
MR 2381409
[3] Doering, C. R., Gibbon, J. D., Holm, D. D., Nicolaenko, B.:
Exact Lyapunov Dimension of the Universal Attractor for the Complex Ginzburg-Landau Equation. Phys. Rev. Lett. 59, Iss. 26-28 (1987), pp. 2911–2914.
DOI 10.1103/PhysRevLett.59.2911
[4] Douady, A., Oesterle, J.:
Dimension de Hausdorff des attracteurs. Comptes Rendus del’Academie des Sciences Paris Serie A. 290 (1980), pp. 1135-1138.
MR 0585918
[5] Ghidaglia, M., Temam, R.:
Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl., 66 (1987), pp. 273–319.
MR 0913856
[7] Kruck, A. V., Malykh, A. E., Reitmann, V.:
Upper Hausdorff dimension estimates and stratification for invariant sets of evolutionary systems on Hilbert manifolds. Differential Equations, 2017 (to appear).
MR 3804278
[8] Lang, S.:
Differential and Riemannian Manifolds. Springer, New York, 1995.
MR 1335233
[9] Leonov, G. A., Reitmann, V., Smirnova, V. B.:
Non-local Methods for Pendulum-like Feedback Systems. Teubner-Texte zur Mathematik, Bd. 132, B.G. Teubner Stuttgart-Leipzig, 1992.
MR 1216519
[10] Temam, R.:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York-Berlin: Springer-Verlag, 1988.
MR 0953967