Previous |  Up |  Next

Article

Title: Upper Hausdorff dimension estimates for invariant sets of evolutionary systems on Hilbert manifolds (English)
Author: Kruck, Amina
Author: Reitmann, Volker
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 247-254
.
Category: math
.
Summary: We prove a generalization of the Douady-Oesterlé theorem on the upper bound of the Hausdorff dimension of an invariant set of a smooth map on an infinite dimensional manifold. It is assumed that the linearization of this map is a noncompact linear operator. A similar estimate is given for the Hausdorff dimension of an invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. (English)
Keyword: Hilbert manifold, Hausdorff dimension, singular value
MSC: 35B40
MSC: 35K57
.
Date available: 2019-09-27T08:06:43Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703054
.
Reference: [1] Boichenko, V. A., Leonov, G. A., Reitmann, V.: Dimension Theory for Ordinary Differential Equations.. Wiesbaden:Vieweg-Teubner Verlag, 2005. MR 2381409
Reference: [2] Chueshov, I. D.: Introduction to the Theory of Infinite-Dimensional Dissipative Systems.. ACTA. Kharkov, 1999 (in Russian). English translation: Acta, Kharkov (2002) (see http://www.emis.de/monographs/Chueshov). MR 1632228
Reference: [3] Doering, C. R., Gibbon, J. D., Holm, D. D., Nicolaenko, B.: Exact Lyapunov Dimension of the Universal Attractor for the Complex Ginzburg-Landau Equation.. Phys. Rev. Lett. 59, Iss. 26-28 (1987), pp. 2911–2914. 10.1103/PhysRevLett.59.2911
Reference: [4] Douady, A., Oesterle, J.: Dimension de Hausdorff des attracteurs.. Comptes Rendus del’Academie des Sciences Paris Serie A. 290 (1980), pp. 1135-1138. MR 0585918
Reference: [5] Ghidaglia, M., Temam, R.: Attractors for damped nonlinear hyperbolic equations.. J. Math. Pures Appl., 66 (1987), pp. 273–319. MR 0913856
Reference: [6] Henon, M. A.: A two-dimensional mapping with a strange attractor.. Commun. Math. Phys. 50 (1976), 2. pp. 69–77. MR 0422932, 10.1007/BF01608556
Reference: [7] Kruck, A. V., Malykh, A. E., Reitmann, V.: Upper Hausdorff dimension estimates and stratification for invariant sets of evolutionary systems on Hilbert manifolds.. Differential Equations, 2017 (to appear). MR 3804278
Reference: [8] Lang, S.: Differential and Riemannian Manifolds.. Springer, New York, 1995. MR 1335233
Reference: [9] Leonov, G. A., Reitmann, V., Smirnova, V. B.: Non-local Methods for Pendulum-like Feedback Systems.. Teubner-Texte zur Mathematik, Bd. 132, B.G. Teubner Stuttgart-Leipzig, 1992. MR 1216519
Reference: [10] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics.. New York-Berlin: Springer-Verlag, 1988. MR 0953967
.

Files

Files Size Format View
Equadiff_14-2017-1_30.pdf 399.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo