Previous |  Up |  Next

Article

Title: Positive solutions for a system of fractional boundary value problems (English)
Author: Henderson, Johnny
Author: Luca, Rodica
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 1-10
.
Category: math
.
Summary: We investigate the existence and multiplicity of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with nonnegative nonlinearities which can be nonsingular or singular functions, subject to multi-point boundary conditions that contain fractional derivatives. (English)
Keyword: Riemann-Liouville fractional differential equations, multi-point boundary conditions, positive solutions, existence
MSC: 34A08
MSC: 34B15
MSC: 45G15
.
Date available: 2019-09-27T07:31:09Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703055
.
Reference: [1] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces., SIAM Review, 18 (1976), pp. 620–709. MR 0415432, 10.1137/1018114
Reference: [2] Arafa, A. A. M., Rida, S. Z., Khalil, M.: Fractional modeling dynamics of HIV and CD4$^+$ T-cells during primary infection., Nonlinear Biomed. Phys., 6 (1) (2012), pp. 1–7. MR 3225564, 10.1186/1753-4631-6-1
Reference: [3] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods., Series on Complexity, Nonlinearity and Chaos, World Scientific, Boston,2012. MR 2894576
Reference: [4] Cole, K.: Electric conductance of biological systems., in: Proc. Cold Spring Harbor Symp. Quant. Biol., Col Springer Harbor Laboratory Press, New York, 1993, pp. 107–116.
Reference: [5] Das, S.: Functional Fractional Calculus for System Identification and Controls., Springer, New York, 2008. MR 2414740
Reference: [6] Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4$^+$ T-cells., Math. Comp. Model., 50 (2009), pp. 386–392. MR 2542785, 10.1016/j.mcm.2009.04.019
Reference: [7] Djordjevic, V., Jaric, J., Fabry, B., Fredberg, J., Stamenovic, D.: Fractional derivatives embody essential features of cell rheological behavior., Ann. Biomed. Eng., 31 (2003), pp. 692–699. 10.1114/1.1574026
Reference: [8] Ge, Z. M., Ou, C. Y.: Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal., Chaos Solitons Fractals, 35 (2008), pp. 705–717. 10.1016/j.chaos.2006.05.101
Reference: [9] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones., Academic Press, New York, 1988. MR 0959889
Reference: [10] Henderson, J., Luca, R.: Existence and multiplicity of positive solutions for a system of fractional boundary value problems., Bound. Value Probl., 2014:60 (2014), pp. 1–17. MR 3352633, 10.1186/1687-2770-2014-60
Reference: [11] Henderson, J., Luca, R.: Positive solutions for a system of fractional differential equations with coupled integral boundary conditions., Appl. Math. Comput., 249 (2014), pp. 182–197. MR 3279412
Reference: [12] Henderson, J., Luca, R.: Nonexistence of positive solutions for a system of coupled fractional boundary value problems., Bound. Value Probl., 2015:138 (2015), pp. 1–12. MR 3382857, 10.1186/s13661-015-0403-8
Reference: [13] Henderson, J., Luca, R.: Positive solutions for a system of semipositone coupled fractional boundary value problems., Bound. Value Probl., 2016(61) (2016), pp. 1–23. MR 3471318, 10.1186/s13661-016-0569-8
Reference: [14] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations., Positive Solutions, Elsevier, Amsterdam, 2016. MR 3430818
Reference: [15] Henderson, J., Luca, R.: Existence of positive solutions for a singular fractional boundary value problem., Nonlinear Anal. Model. Control, 22(1) (2017), pp. 99–114. MR 3594626, 10.15388/NA.2017.1.7
Reference: [16] Henderson, J., Luca, R., Tudorache, A.: On a system of fractional differential equations with coupled integral boundary conditions., Fract. Calc. Appl. Anal., 18(2) (2015), pp. 361–386. MR 3323907, 10.1515/fca-2015-0024
Reference: [17] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations., North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006. MR 2218073
Reference: [18] Klafter, J., Lim, S. C., (Eds.), R. Metzler: Fractional Dynamics in Physics, Singapore., World Scientific, 2011. MR 2920446
Reference: [19] Luca, R., Tudorache, A.: Positive solutions to a system of semipositone fractional boundary value problems., Adv. Difference Equ., 2014(179) (2014), pp. 1–11. MR 3357337, 10.1186/1687-1847-2014-179
Reference: [20] Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach., Phys. Rep., 339 (2000), pp. 1–77. MR 1809268, 10.1016/S0370-1573(00)00070-3
Reference: [21] Ostoja-Starzewski, M.: Towards thermoelasticity of fractal media., J. Therm. Stress., 30 (2007), pp. 889–896. 10.1080/01495730701495618
Reference: [22] Podlubny, I.: Fractional Differential Equations., Academic Press, San Diego, 1999. MR 1658022
Reference: [23] Povstenko, Y.Z.: Fractional Thermoelasticity., New York, Springer, 2015. MR 3287225
Reference: [24] Sabatier, J., Agrawal, O. P., (Eds.), J. A. T. Machado: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering., Springer, Dordrecht, 2007. MR 2432163
Reference: [25] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives., Theory and Applications, Gordon and Breach, Yverdon, 1993. MR 1347689
Reference: [26] Sokolov, I. M., Klafter, J., Blumen, A.: A fractional kinetics., Phys. Today, 55 (2002), pp. 48–54. 10.1063/1.1535007
Reference: [27] Zhou, Y., Xu, Y.: Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations., J. Math. Anal. Appl., 320 (2006), pp. 578–590. MR 2225977, 10.1016/j.jmaa.2005.07.014
.

Files

Files Size Format View
Equadiff_14-2017-1_3.pdf 425.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo