Previous |  Up |  Next

Article

Title: On Lyapunov stability in hypoplasticity (English)
Author: Kovtunenko, Victor A.
Author: Krejčí, Pavel
Author: Bauer, Erich
Author: Siváková, Lenka
Author: Zubkova, Anna V.
Language: English
Journal: Proceedings of Equadiff 14
Volume: Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017
Issue: 2017
Year:
Pages: 107-116
.
Category: math
.
Summary: We investigate the Lyapunov stability implying asymptotic behavior of a nonlinear ODE system describing stress paths for a particular hypoplastic constitutive model of the Kolymbas type under proportional, arbitrarily large monotonic coaxial deformations. The attractive stress path is found analytically, and the asymptotic convergence to the attractor depending on the direction of proportional strain paths and material parameters of the model is proved rigorously with the help of a Lyapunov function. (English)
Keyword: Nonlinear ODE, rate-independent problem, asymptotic behavior, attractor, Lyapunov function, proportional loading, hypoplasticity, granular media
MSC: 34D20
MSC: 37B25
MSC: 74C15
.
Date available: 2019-09-27T07:44:54Z
Last updated: 2019-09-27
Stable URL: http://hdl.handle.net/10338.dmlcz/703056
.
Reference: [1] Annin, B. D., Kovtunenko, V. A., Sadovskii, V. M.: Variational and hemivariational inequalities in mechanics of elastoplastic, granular media, and quasibrittle cracks., in Analysis, Modelling, Optimization, and Numerical Techniques, G. O. Tost, O. Vasilieva, eds.,Springer Proc. Math. Stat., 121 (2015), 49–56. MR 3354167
Reference: [2] Bauer, E.: Modelling limit states within the framework of hypoplasticity., AIP Conf. Proc., 1227, J. Goddard, P. Giovine and J. T. Jenkin, eds., AIP, 2010, pp. 290–305.
Reference: [3] Bauer, E., Wu, W.: A hypoplastic model for granular soils under cyclic loading., Proc. Int. Workshop Modern Approaches to Plasticity, D. Kolymbas, ed., Elsevier, 2010, pp. 247–258.
Reference: [4] Brokate, M., Krejčí, P.: Wellposedness of kinematic hardening models in elastoplasticity., RAIRO Modél. Math. Anal. Numér., (1998), 177–209. MR 1622607, 10.1051/m2an/1998320201771
Reference: [5] Gudehus, G.: Physical Soil Mechanics., Springer, Berlin, Heidelberg, 2011.
Reference: [6] Huang, W., Bauer, E.: Numerical investigations of shear localization in a micro-polar hypoplastic material., Int. J. Numer. Anal. Meth. Geomech., 27 (2003), pp. 325–352. 10.1002/nag.275
Reference: [7] Khludnev, A.M., Kovtunenko, V.A.: Analysis of Cracks in Solids., WIT-Press, Southampton, Boston, 2000.
Reference: [8] Kolymbas, D.: An outline of hypoplasticity., Arch. Appl. Mech., 61 (1991), pp. 143–151.
Reference: [9] Kovtunenko, V.A., Zubkova, A.V.: Mathematical modeling of a discontinuous solution of the generalized Poisson–Nernst–Planck problem in a two-phase medium., Kinet. Relat. Mod., 11 (2018), pp.119–135. MR 3708185, 10.3934/krm.2018007
Reference: [10] Niemunis, A.: Extended Hypoplastic Models for Soils., Habilitation thesis, Ruhr University, Bochum, 2002.
Reference: [11] Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range., Mech. Cohes.-Frict. Mat., 2 (1997), pp. 279–299. 10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8
Reference: [12] Svendsen, B., Hutter, K., Laloui, L.: Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity., Continuum Mech. Therm., 4 (1999), pp. 263–275. MR 1710675, 10.1007/s001610050115
Reference: [13] Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials., Mech. Mater., 23 (1996), pp. 45–69. 10.1016/0167-6636(96)00006-3
.

Files

Files Size Format View
Equadiff_14-2017-1_15.pdf 404.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo