16 Associative rings and algebras
16Sxx Rings and algebras arising under various constructions
16S36 Ordinary and skew polynomial rings and semigroup rings (13 articles)
-
Farahani, Alireza Majdabadi; Maghasedi, Mohammad; Heydari, Farideh; Tavallaee, Hamidagha:
On weakened $(\alpha ,\delta )$-skew Armendariz rings.
(English).
Mathematica Bohemica,
vol. 147
(2022),
issue 2,
pp. 187-200
-
Owen, Adam; Pumplün, Susanne:
A generalisation of Amitsur's A-polynomials.
(English).
Communications in Mathematics,
vol. 29
(2021),
issue 2,
pp. 281-289
-
Paykan, Kamal:
Skew inverse power series rings over a ring with projective socle.
(English).
Czechoslovak Mathematical Journal,
vol. 67
(2017),
issue 2,
pp. 389-395
-
Bhat, Vijay Kumar:
Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings.
(English).
Czechoslovak Mathematical Journal,
vol. 63
(2013),
issue 4,
pp. 1049-1056
-
Louzari, Mohamed:
On McCoy condition and semicommutative rings.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 54
(2013),
issue 3,
pp. 329-337
-
Klim, Jennifer; Majid, Shahn:
Bicrossproduct Hopf quasigroups.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 51
(2010),
issue 2,
pp. 287-304
-
Ecevit, Şule; Koşan, Muhammet Tamer:
On rings all of whose modules are retractable.
(English).
Archivum Mathematicum,
vol. 45
(2009),
issue 1,
pp. 71-74
-
Bican, Ladislav:
Non-singular covers over monoid rings.
(English).
Mathematica Bohemica,
vol. 133
(2008),
issue 1,
pp. 9-17
-
Bican, Ladislav:
Non-singular covers over ordered monoid rings.
(English).
Mathematica Bohemica,
vol. 131
(2006),
issue 1,
pp. 95-104
-
Park, Sangwon; Cho, Eunha:
Injective and projective properties of $R[x]$-modules.
(English).
Czechoslovak Mathematical Journal,
vol. 54
(2004),
issue 3,
pp. 573-578
-
Voskoglou, Michael Gr.:
A note on the simplicity of skew polynomial rings of derivation type.
(English).
Acta Mathematica Universitatis Ostraviensis,
vol. 12
(2004),
issue 1,
pp. 61-64
-
Park, Sangwon:
The general structure of inverse polynomial modules.
(English).
Czechoslovak Mathematical Journal,
vol. 51
(2001),
issue 2,
pp. 343-349
-
Ježek, Jan:
Rings of skew polynomials in algebraical approach to control theory.
(English).
Kybernetika,
vol. 32
(1996),
issue 1,
pp. 63-80