26 Real functions
26Cxx Polynomials, rational functions
26C10 Polynomials: location of zeros (11 articles)
-
Andres, Jan; Čermák, Jan; Fedorková, Lucie:
Piers Bohl stále inspirující.
(Czech) [Piers Bohl Still Inspiring].
Pokroky matematiky, fyziky a astronomie,
vol. 69
(2024),
issue 3,
pp. 133-152
-
Ndikubwayo, Innocent:
Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation.
(English).
Czechoslovak Mathematical Journal,
vol. 70
(2020),
issue 3,
pp. 793-804
-
Kostov, Vladimir Petrov:
Polynomials, sign patterns and Descartes' rule of signs.
(English).
Mathematica Bohemica,
vol. 144
(2019),
issue 1,
pp. 39-67
-
Kostov, Vladimir:
On realizability of sign patterns by real polynomials.
(English).
Czechoslovak Mathematical Journal,
vol. 68
(2018),
issue 3,
pp. 853-874
-
Výborný, Rudolf:
A simple proof of the Fundamental Theorem of Algebra.
(English).
Mathematica Bohemica,
vol. 135
(2010),
issue 1,
pp. 57-61
-
Šípek, Jan; Zítko, Jan:
Algoritmy na výpočet kořenů polynomu.
(Czech) [Algorithms for computation of polynomial zeros].
Pokroky matematiky, fyziky a astronomie,
vol. 46
(2001),
issue 1,
pp. 33-42
-
Mastorakis, Nikos E.:
An extension of the root perturbation $m$-dimensional polynomial factorization method.
(English).
Kybernetika,
vol. 32
(1996),
issue 5,
pp. 443-453
-
Nekvinda, Miloslav:
On stable polynomials.
(English).
Aplikace matematiky,
vol. 34
(1989),
issue 3,
pp. 177-196
-
Komara, Imrich:
Bounds of the roots of the real polynomial.
(English).
Aplikace matematiky,
vol. 32
(1987),
issue 1,
pp. 9-15
-
-
Mařík, Jan:
O polynomech, které mají jen reálné kořeny.
(Czech) [On polynomials, all of whose zeros are real].
Časopis pro pěstování matematiky,
vol. 89
(1964),
issue 1,
pp. 5-9