[1] Bohl, P.: Ueber die Darstellung von Functionen einer Variabeln durch trigonometrische Reihen mit mehreren einer Variabeln proportionalen Argumenten. Magisterské teze. Jurjew (Dorpat), 1893.
[2] Bohl, P.:
Über die Bewegung eines mechanischen Systems in der Nähe einer Gleichgewichtslage. J. Reine Angew. Math. 127 (1904), 179–276.
MR 1580639
[3] Bohl, P.:
Über eine Differentialgleichung der Störungstheorie. J. Reine Angew. Math. 131 (1906), 268–321.
MR 1580707
[9] Clark, C. W.:
A delayed-recruitment model of population dynamics, with an application to baleen whale populations. J. Math. Biol. 3 (1976), 381–391.
DOI 10.1007/BF00275067 |
MR 0429174
[10] Čermák, J.:
Stability conditions for linear delay difference equations: A survey and perspectives. Tatra Mt. Math. Publ. 63 (2015), 1–29.
MR 3411432
[13] Dannan, F. M., Elaydi, S.:
The asymptotic stability of linear difference equations of advanced type. J. Comput. Anal. Appl. 6 (2003), 1–11.
MR 2223295
[14] Doan, T. S., Palmer, K. J., Rasmussen, M.:
The Bohl spectrum for linear nonautonomous differential equations. J. Dyn. Differ. Equations 29 (2017), 1459–1485.
DOI 10.1007/s10884-016-9530-x |
MR 3736143
[15] Fischer, A.: Od funkcí periodických ke skoroperiodickým. Pokroky Mat. Fyz. Astronom. 45 (2000), 273–283.
[18] Cheng, S. S., Huang, S. Y.:
Alternate derivations of the stability region of a difference equation with two delays. Appl. Math. E-Notes 9 (2009), 225–253.
MR 2550493
[20] Kuruklis, S. A.:
The asymptotic stability of $x_{n+1} - ax_n + bx_{n-k} = 0$. J. Math. Anal. Appl. 188 (1994), 719–731.
MR 1305480
[22] Marden, M.:
Geometry of polynomials. Second edition, Amer. Math. Soc., Providence, RI, 1966.
MR 0225972
[27] Pick, L.: O využití iracionality při hledání sedmého nebe. Pokroky Mat. Fyz. Astronom. 67 (2022), 37–44.
[29] Rothe, E. H.:
Introduction to various aspects of degree theory in Banach spaces. Amer. Math. Soc., Providence, RI, 1986.
MR 0852987
[31] Šostak, A.: The Latvian Mathematical Society after 10 years. J. Eur. Math. Soc. 48 (2003), 21–25.