Previous |  Up |  Next

Article

Title: An operator connected with the third boundary value problem in potential theory (English)
Author: Netuka, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 22
Issue: 3
Year: 1972
Pages: 462-489
Summary lang: English
.
Category: math
.
MSC: 31B20
idZBL: Zbl 0241.31009
idMR: MR0316733
DOI: 10.21136/CMJ.1972.101116
.
Date available: 2008-06-09T13:58:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101116
.
Reference: [1] M. G. Arsove: Continuous potentials and linear mass distributions.SIAM Review 2 (1960), 177-184. Zbl 0094.08005, MR 0143926, 10.1137/1002039
Reference: [2] E. De Giorgi: Nuovi teoremi relativi alle misure (r - l)-dimensionali in uno spazio ad r dimensioni.Ricerche di Matematica 4 (1955), 95-113. MR 0074499
Reference: [3] N. Dunford, J. T. Schwartz: Linear operators.Part I, Interscience Publishers, New York, 1958. Zbl 0084.10402, MR 0117523
Reference: [4] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44 - 76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [5] H. Federer: The (Ф, k) rectifiable subset of n space.Trans. Amer. Math. Soc. 62 (1947), 114-192. MR 0022594
Reference: [6] H. Féderer: A note on the Gauss-Green theorem.Proc. Amer. Math. Soc. 9 (1958), 447-451. MR 0095245, 10.1090/S0002-9939-1958-0095245-2
Reference: [7] H. Federer: Curvature measures.Trans. Amer. Math. Soc. 93 (1959), 418-491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1
Reference: [8] W. H. Fleming: Functions of several variables.Addison-Wesley Publishing Соmp., INC., 1965. Zbl 0136.34301, MR 0174675
Reference: [9] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [10] J. Král: Flows of heat and the Fourier problem., Czechoslovak Math. J. 20 (1970), 556-598. MR 0271554
Reference: [11] K. Kuratowski: Topology.vol. I, Academic Press, 1966. Zbl 0163.17002, MR 0217751, 10.1016/B978-0-12-429201-7.50006-5
Reference: [12] N. S. Landkof: Fundamentals of modern potential theory.(Russian), Izdat. Nauka, Moscow, 1966. MR 0214795
Reference: [13] J. W. Milnor: Topology from the differentiable viewpoint.The University Press of Virginia, 1965. Zbl 0136.20402, MR 0226651
Reference: [14] M. Miranda: Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito.Ann. Scuola Norm. Sup. Pisa 18 (1964), 27-56. Zbl 0131.11802, MR 0165073
Reference: [15] I. Netuka: The Robin problem in potential theory.Comment. Math. Univ. Carolinae 12 (1971), 205-211. Zbl 0215.42602, MR 0287021
Reference: [16] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22 (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [17] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22 (1972) (to appear). Zbl 0242.31007, MR 0313528
Reference: [18] V. D. Sapoznikova: Solution of the third boundary value problem by the method of potential theory for regions with irregular boundaries.(Russian), Problems Mat. Anal. Boundary Value Problems Integr. Equations (Russian), 35-44, Izdat. Leningrad. Univ., Leningrad, MR 0213597
.

Files

Files Size Format View
CzechMathJ_22-1972-3_12.pdf 2.375Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo