Previous |  Up |  Next

Article

Title: Oscillation of solutions of delay differential equations (English)
Author: Marušiak, Pavol
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 24
Issue: 2
Year: 1974
Pages: 284-291
.
Category: math
.
MSC: 34K15
idZBL: Zbl 0315.34090
idMR: MR0348230
DOI: 10.21136/CMJ.1974.101240
.
Date available: 2008-06-09T14:06:56Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101240
.
Reference: [1] Hallam T. G.: Asymptotic behavior of the solutions of an n-th order nonhomogeneous ordinary differential equation.Trans. Amer. Math. Soc. 122 (1966), 177-194. MR 0188562
Reference: [2] Kusano T., Onose H.: Oscillation of solutions of nonlinear differential delay equations of arbitrary order.Hiroshima Math. J. 2 (1972), 1 - 13. Zbl 0269.34064, MR 0324175, 10.32917/hmj/1206137804
Reference: [3] Kusano T., Onose H.: Nonlinear oscillations of a sublinear delay equation of arbitrary order.Proc. Amer. Math. Soc. 40 (1973), 219-224. MR 0324177, 10.1090/S0002-9939-1973-0324177-5
Reference: [4] Mamsiak P.: Note on the Ladas' paper on oscillation and asymptotic behavior of solutions of differential equations with retarded argument.J. Differential Equations 13 (1973), 150- 156. MR 0355266, 10.1016/0022-0396(73)90037-5
Reference: [5] Marušiak P.: Oscillation of solutions of the delay differential equation $y\sp{(2n)}(t)+\sum \sp{m}\sb{i=1}p\sb{i}(t)f\sb{j}(y[h\sb{i}(t)])=0,$ $n\geq 1$.Časopis Pěst. Mat. 99 (1974), 131-141. MR 0404810
Reference: [6] Шевело В. H., Варех H. В.: О некоторых свойствах решений дифференциальных уравнений с запаздыванием.Украинский Мат. Журнал, 6 (1972), 807-813. Zbl 1170.01322
.

Files

Files Size Format View
CzechMathJ_24-1974-2_11.pdf 703.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo