Previous |  Up |  Next

Article

Title: $n$-th order ordinary differential systems under Stieltjes boundary conditions (English)
Author: Brown, Richard C.
Author: Krall, Allan M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 27
Issue: 1
Year: 1977
Pages: 119-131
Summary lang: Russian
.
Category: math
.
MSC: 34B25
idZBL: Zbl 0369.34006
idMR: MR0430394
DOI: 10.21136/CMJ.1977.101450
.
Date available: 2008-06-09T14:22:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101450
.
Reference: [1] R. Arens: Operational calcuhis of linear relations.Pacific J. Math. 11 (1961), 9-23. MR 0123188, 10.2140/pjm.1961.11.9
Reference: [2] R. C. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions.S.I.A.M. J. Math. Anal., to appear. Zbl 0316.47027, MR 0385224
Reference: [3] R. С. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions, II: nonsmooth coefficients and nonsingular measures.Ann. Mat. Рurа. Appl., to appear. Zbl 0316.47027, MR 0422745
Reference: [4] R. C. Brown: Adjoint domains and generalized splines.Czech. Math. J. 25 (1975), 134-147. Zbl 0309.41014, MR 0397243
Reference: [5] R. C. Brown: The operator theory of generalized boundary value problems.MRC Tech. Summ. Rept. #1446, June 1974.
Reference: [6] E. A. Coddington: Self-adjoint subspace extensions of nondensely symmetric operators.Bull. Amer. Math. Soc. 79 (1973), 712-716. MR 0322568, 10.1090/S0002-9904-1973-13275-6
Reference: [7] E. A. Coddington: Eigenfunction expansions for nondensely defined operators generated by symmetric ordinary differential expressions.Bull. Amer. Math. Soc. 79 (1973), 964-968. Zbl 0285.47021, MR 0322592, 10.1090/S0002-9904-1973-13280-X
Reference: [8] E. A. Coddington: Self-adjoint subspace extensions of nondensely defined symmetric operators.Advances in Math., 14 (1974), 309-332. Zbl 0307.47028, MR 0353032, 10.1016/0001-8708(74)90034-6
Reference: [9] E. A. Coddington: Self-adjoint problems for nondensely defined ordinary differential operators and their eigenfunction expansions.Advances in Math., to appear. Zbl 0307.47029, MR 0361927
Reference: [10] E. A. Coddington, N. Levinson: Theory of ordinary differential equations.McGraw Hill, New York, 1955. Zbl 0064.33002, MR 0069338
Reference: [11] N. Dunford, J. T. Schwartz: Linear operators. Part 1.Interscience, New York, 1957.
Reference: [12] M. Hestenes: Calculus of variations and optimal control theory.Wiley, New York, 1966. Zbl 0173.35703, MR 0203540
Reference: [13] J. L. Kelley, I. Namioka: Linear topological spaces.Van Nostrand, Princeton, New Jersey, 1963. Zbl 0115.09902, MR 0166578
Reference: [14] A. M. Krall: Differential-boundary operators.Trans. Amer. Math. Soc., 154 (1971), 429-458. Zbl 0217.11802, MR 0271445, 10.1090/S0002-9947-1971-0271445-4
Reference: [15] A. M. Krall: Stietltjes differential-boundary operators.Proc. Amer. Math. Soc., 41 (1973), 80-86. MR 0320415, 10.1090/S0002-9939-1973-0320415-3
Reference: [16] A. M. Krall: Stieltjes differential-boundary operators II.Pacific J. Math., to appear. Zbl 0283.34027, MR 0372316
Reference: [17] A. M. Krall: Stieltjes differential-boundary operators III. Zbl 0294.34006
Reference: [18] A. M. Krall: The development of general differential and general differential-boundary systems.Rocky Mt. J. Math., to appear. Zbl 0322.34009, MR 0409946
Reference: [19] E. J. McShane: Integration.Princeton U. Press, 1944. Zbl 0060.13010, MR 0082536
Reference: [20] D. L. Rusell: Control theory of hyperbolic equations related to certain questions in harmonic analysis and spectral theory.J. Math. Anal. Appl. 40 (1972), 336-368. MR 0324228, 10.1016/0022-247X(72)90055-8
.

Files

Files Size Format View
CzechMathJ_27-1977-1_10.pdf 1.245Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo