Title:
|
On minimizing the sum of squares of $\Cal L^2$ norms of differential operators under constraints (English) |
Author:
|
Brown, Richard C. |
Author:
|
Krall, Allan M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
27 |
Issue:
|
1 |
Year:
|
1977 |
Pages:
|
132-143 |
Summary lang:
|
Russian |
. |
Category:
|
math |
. |
MSC:
|
34B25 |
idZBL:
|
Zbl 0369.34007 |
idMR:
|
MR0430395 |
DOI:
|
10.21136/CMJ.1977.101451 |
. |
Date available:
|
2008-06-09T14:22:10Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101451 |
. |
Reference:
|
[1] L. D. Berkovitz, H. Pollard: A nonclassical variational problem arising from an optimal filter problem II.Arch. Ratl. Mech. Anal. 38 (1970), 161-172. MR 0270247, 10.1007/BF00251656 |
Reference:
|
[2] R. С. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions.S.I.A.M. J. Math. Anal., to appear. Zbl 0316.47027, MR 0385224 |
Reference:
|
[3] R. C. Brown: Duality theory for $n$-th order differential operators under Stieltjes boundary conditions, II: Nonsmooth coefficients and nonsingular measures.Ann. Mat. Рurа. Appl., to appear. Zbl 0316.47027, MR 0422745 |
Reference:
|
[4] R. C. Brown: Adjoint domains and generalized splines.Czech. Math. J., 25 (1975), 134-147. Zbl 0309.41014, MR 0397243 |
Reference:
|
[5] N. Dunford, J. T. Schwartz: Linear operators.Part 1, Interscience, New York, 1975. |
Reference:
|
[6] S. Goldberg: Unbounded linear operators.McGraw-Hill, New York, 1966. Zbl 0148.12501, MR 0200692 |
Reference:
|
[7] M. Golomb, J. Jerome: Linear ordinary differential equations with boundary conditions on arbitrary point sets.Trans. Amer. Math. Soc., 153 (1971), 235 - 264. Zbl 0238.34027, MR 0269918, 10.1090/S0002-9947-1971-0269918-3 |
Reference:
|
[8] A. M. Krall, R. С Brown: $n$-th order differential systems under Stieltjes boundary conditions.MRC Tech. Summ. Rept. #1581. |
Reference:
|
[9] D. G. Lunberger: Optimization by vector space methods.John Wiley, New York, 1969. MR 0238472 |
Reference:
|
[10] L. Schumaker: Spline functions: Theory and applications.in press. |
. |