Previous |  Up |  Next

Article

References:
[1] Artstein Z.: Continuous dependence of solutions of Volterra integral equations. SIAM J. Math. Anal., 6 (1975), 446-456. DOI 10.1137/0506039 | MR 0361656 | Zbl 0341.45005
[2] Artstein Z.: Topological dynamics of ordinary differential equations and Kurzweil equations. J. Differential Equations, 23 (1977), 224-243. DOI 10.1016/0022-0396(77)90128-0 | MR 0432985 | Zbl 0353.34044
[3] Artstein Z.: Continuous dependence of solutions of operator equations I. Trans. Amer. Math. Soc., 231 (1977), 143-166. DOI 10.1090/S0002-9947-1977-0445351-1 | MR 0445351 | Zbl 0368.47035
[4] Henstock R.: Theory of integration. Butter worths, London 1963. MR 0158047 | Zbl 0154.05001
[5] Kelley W. G.: A Kneser theorem for Volterra integral equations. Proc. Amer. Math. Soc., 40 (1973), 183-190. DOI 10.1090/S0002-9939-1973-0316983-8 | MR 0316983 | Zbl 0244.45003
[6] Kurzweil J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J., 7 (1957), 418-449. MR 0111875 | Zbl 0090.30002
[7] Kurzweil J.: Generalized ordinary differential equations. Czech. Math. J., 8 (1958), 360 to 389. MR 0111878 | Zbl 0102.07003
[8] Kurzweil J.: Nichtabsolut konvergente Integrale. Teubner Texte Math., В. G. Teubner, Leipzig 1980. MR 0597703 | Zbl 0441.28001
[9] Mawhin J.: Introduction à l'Analyse. Univ. de Louvain, Inst. Mathématique, 1979. Zbl 0444.26002
[10] Miller R. K.: Nonlinear Volterra integral equations. Benjamin, Menlo Park, Calif., 1971. MR 0511193 | Zbl 0448.45004
[11] Neustadt L. W.: On the solutions of certain integral-like operator equations. Arch. Rat. Mech. Anal, 38 (1970), 131-160. DOI 10.1007/BF00249976 | MR 0262893 | Zbl 0208.16701
Partner of
EuDML logo