[2] N. I. Akhiezer, I. M. Glazman:
Theory of linear operators in Hilbert space: Volume I. (Ungar; New York, 1961).
MR 0264420
[3] F. V. Atkinson:
Discrete and continuous boundary problems. (Academic Press; New York, 1964).
MR 0176141 |
Zbl 0117.05806
[4] C. Bennewitz, W. N. Everitt: Some remarks on the Titchmarsh-Weyl $m$-coefficient. In: Tribute to Åke Pleijel: Proceedings of the Pleijel Conference, University of Uppsala (1979), 49-108. (Published by the Department of Mathematics, University of Uppsala, Sweden, in 1980).
[5] G. Birkhoff, Gian-Carlo Rota:
Ordinary differential equations. (Ginn and Company, New York, 1962).
MR 0138810
[6] O. Borůvka:
Linear differential transformations of the second order. (English Universities Press; London, 1971; translated from the German edition of 1967).
MR 0463539
[7] N. Dunford, J. T. Schwartz:
Linear operators: Part II. (Interscience Publishers; New York, 1963).
MR 0188745 |
Zbl 0128.34803
[8] M. S. P. Eastham:
Theory of ordinary differential equations. (Van Nostrand Reinhold Company; London, 1970).
Zbl 0195.37001
[9] M. S. P. Eastham:
The spectral theory of periodic differential equations. (Scottish Academic Press; Edinburgh, 1973).
Zbl 0287.34016
[10] W. N. Everitt:
On a property of the $m$-coefficient of a second-order linear differential equation. J. London Math. Soc. (2) 4 (1972), 443-457.
MR 0298104 |
Zbl 0262.34012
[11] W. N. Everitt:
Integral inequalities and the Liouville transformation. Lecture Notes in Mathematics 415 (1974), 338-352. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman).
DOI 10.1007/BFb0065546 |
MR 0419919 |
Zbl 0307.34013
[12] W. N. Everitt:
A note on the Dirichlet condition for second-order differential expressions. Canadian J. Math. XXVII (1916), 312-320.
MR 0430391
[14] W. N. Everitt M. Giertz, J. B. McLeod:
On the strong and weak limit-point classification of second-order differential expressions. Proc. London Math. Soc. (3) 29 (1974), 142-158.
MR 0361255
[17] W. N. Everitt, A. Zettl:
Generalized symmetric ordinary differential expressions I: the general theory. Nieuw Archief voor Wiskunde (3) XXVII (1979), 363-397.
MR 0553264 |
Zbl 0451.34009
[20] D. B. Hinton:
Limit point - limit circle criteria for $(py\sp{\prime} )\sp{\prime} +qy=\lambda ky$. Lecture Notes in Mathematics 415 (1974), 173 - 183. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman).
DOI 10.1007/BFb0065526 |
MR 0425236
[21] E. L. Ince:
Ordinary differential equations. (Dover Publications, Inc.: New York, 1956; original edition, 1926).
MR 0010757
[22] H. Kalf:
Remarks on some Dirichlet type results for semi-bounded Sturm-Liouville operators. Math. Ann. 210 (1974), 197-205.
DOI 10.1007/BF01350583 |
MR 0355177
[23] M. A. Naimark:
Linear differential operators: Part II. (Ungar; New York, 1968).
Zbl 0227.34020
[24] F. Neuman:
On the Liouville transformation. Rendiconti di Matematica 3 (1970), 132-139.
MR 0273090 |
Zbl 0241.34005
[25] F. Neuman:
On a problem of transformations between limit-point and limit-circle differential equations. Proc. Royal. Soc. Edinburgh 72 (1973/74), 187-193.
MR 0385226
[26] K. S. Ong:
On the limit-point and limit-circle theory of a second-order differential equation. Proc. Royal Soc. Edinburgh 72 (1975), 245-256.
MR 0393635
[29] E. C. Titchmarsh:
Eigenfunction expansions; Part I. (Oxford University Press, 1962).
MR 0176151
[30] R. Weinstock:
Calculus of variations. (McGraw-Hill; New York, 1952),
Zbl 0049.19503