Previous |  Up |  Next

Article

References:
[1] С. D. Ahlbrandt: Disconjugacy criteria for self-adjoint differential systems. J. Diff. Equations 6 (1969), 271-295. DOI 10.1016/0022-0396(69)90018-7 | MR 0244541 | Zbl 0175.09301
[2] N. I. Akhiezer, I. M. Glazman: Theory of linear operators in Hilbert space: Volume I. (Ungar; New York, 1961). MR 0264420
[3] F. V. Atkinson: Discrete and continuous boundary problems. (Academic Press; New York, 1964). MR 0176141 | Zbl 0117.05806
[4] C. Bennewitz, W. N. Everitt: Some remarks on the Titchmarsh-Weyl $m$-coefficient. In: Tribute to Åke Pleijel: Proceedings of the Pleijel Conference, University of Uppsala (1979), 49-108. (Published by the Department of Mathematics, University of Uppsala, Sweden, in 1980).
[5] G. Birkhoff, Gian-Carlo Rota: Ordinary differential equations. (Ginn and Company, New York, 1962). MR 0138810
[6] O. Borůvka: Linear differential transformations of the second order. (English Universities Press; London, 1971; translated from the German edition of 1967). MR 0463539
[7] N. Dunford, J. T. Schwartz: Linear operators: Part II. (Interscience Publishers; New York, 1963). MR 0188745 | Zbl 0128.34803
[8] M. S. P. Eastham: Theory of ordinary differential equations. (Van Nostrand Reinhold Company; London, 1970). Zbl 0195.37001
[9] M. S. P. Eastham: The spectral theory of periodic differential equations. (Scottish Academic Press; Edinburgh, 1973). Zbl 0287.34016
[10] W. N. Everitt: On a property of the $m$-coefficient of a second-order linear differential equation. J. London Math. Soc. (2) 4 (1972), 443-457. MR 0298104 | Zbl 0262.34012
[11] W. N. Everitt: Integral inequalities and the Liouville transformation. Lecture Notes in Mathematics 415 (1974), 338-352. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). DOI 10.1007/BFb0065546 | MR 0419919 | Zbl 0307.34013
[12] W. N. Everitt: A note on the Dirichlet condition for second-order differential expressions. Canadian J. Math. XXVII (1916), 312-320. MR 0430391
[13] W. N. Everitt: A general integral inequality associated with certain ordinary differential operators. Quaestiones Mathematicae 2 (1978), 479-494. DOI 10.1080/16073606.1978.9631547 | MR 0486761 | Zbl 0396.26006
[14] W. N. Everitt M. Giertz, J. B. McLeod: On the strong and weak limit-point classification of second-order differential expressions. Proc. London Math. Soc. (3) 29 (1974), 142-158. MR 0361255
[15] W. N. Everitt, S. G. Halvorsen: On the asymptotic form of the Titchmarsh-Weyl $m$-coefficient. Applicable Analysis 8 (1978), 153 - 169. DOI 10.1080/00036817808839223 | MR 0523952 | Zbl 0406.34047
[16] W. N. Everitt, D. Race: On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations. Quaestiones Mathematicae 2 (1978), 507-512. DOI 10.1080/16073606.1978.9631549 | MR 0477222 | Zbl 0392.34002
[17] W. N. Everitt, A. Zettl: Generalized symmetric ordinary differential expressions I: the general theory. Nieuw Archief voor Wiskunde (3) XXVII (1979), 363-397. MR 0553264 | Zbl 0451.34009
[18] W. N. Everitt, A. Zettl: On a class of integral inequalities. J. London Math. Soc. (2) 17 (1978), 291-303. DOI 10.1112/jlms/s2-17.2.291 | MR 0477234 | Zbl 0388.26007
[19] E. Hille: Lectures on ordinary differential equations. (Addison-Wesley; London, 1969). MR 0249698 | Zbl 0179.40301
[20] D. B. Hinton: Limit point - limit circle criteria for $(py\sp{\prime} )\sp{\prime} +qy=\lambda ky$. Lecture Notes in Mathematics 415 (1974), 173 - 183. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). DOI 10.1007/BFb0065526 | MR 0425236
[21] E. L. Ince: Ordinary differential equations. (Dover Publications, Inc.: New York, 1956; original edition, 1926). MR 0010757
[22] H. Kalf: Remarks on some Dirichlet type results for semi-bounded Sturm-Liouville operators. Math. Ann. 210 (1974), 197-205. DOI 10.1007/BF01350583 | MR 0355177
[23] M. A. Naimark: Linear differential operators: Part II. (Ungar; New York, 1968). Zbl 0227.34020
[24] F. Neuman: On the Liouville transformation. Rendiconti di Matematica 3 (1970), 132-139. MR 0273090 | Zbl 0241.34005
[25] F. Neuman: On a problem of transformations between limit-point and limit-circle differential equations. Proc. Royal. Soc. Edinburgh 72 (1973/74), 187-193. MR 0385226
[26] K. S. Ong: On the limit-point and limit-circle theory of a second-order differential equation. Proc. Royal Soc. Edinburgh 72 (1975), 245-256. MR 0393635
[27] Å. Pleijel: Generalized Weyl circles. Lecture Notes in Mathematics 415 (1974), 211 - 226. (Springer-Verlag; Heidelberg, 1974; edited by I. M. Michael and B. D. Sleeman). DOI 10.1007/BFb0065531 | MR 0422741 | Zbl 0301.34025
[28] W. T. Reid: Ordinary differential equations. (Wiley and Sons, Inc.; New York, 1971). MR 0273082 | Zbl 0212.10901
[29] E. C. Titchmarsh: Eigenfunction expansions; Part I. (Oxford University Press, 1962). MR 0176151
[30] R. Weinstock: Calculus of variations. (McGraw-Hill; New York, 1952), Zbl 0049.19503
[31] A. Zettl: Formally self-adjoint quasi-differential operators. Rocky Mountain J. of Math. 5 (1975), 453-474. DOI 10.1216/RMJ-1975-5-3-453 | MR 0379976
Partner of
EuDML logo