Previous |  Up |  Next

Article

Title: Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions (English)
Author: Drábek, Pavel
Author: Kučera, Milan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 1
Year: 1986
Pages: 116-130
Summary lang: Russian
.
Category: math
.
MSC: 35K57
MSC: 35P30
MSC: 47H15
idZBL: Zbl 0608.35032
idMR: MR822872
DOI: 10.21136/CMJ.1986.102072
.
Date available: 2008-06-09T15:09:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102072
.
Reference: [1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problems.Ind. Univ. Math. J. 23 (1974), 1069-1076. Zbl 0276.47051, MR 0348567, 10.1512/iumj.1974.23.23087
Reference: [2] G. Duvant J.-L. Lions: Les inéquations en mechanique et on physique.Dunod, Paris 1972.
Reference: [3] S. Fučík A. Kufner: Nonlinear differential equations.Elsevier, Scient. Publ. Соmр., Amsterdam-Oxford-New York 1980. MR 0558764
Reference: [4] P. Drábek M. Kučera M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czechoslovak Math. J. 35 (110) 1985, 639-660. MR 0809047
Reference: [5] P. Drábek M. Kučera: Reaction-diffusion systems: Destabilizing eifect of unilateral conditions.To appear. MR 0969497
Reference: [6] H. Kielhöfer: Stability and semilinear evolution equations in Hilbert space.Arch. Rational Mech. Anal., 57 (1974), 150-165. MR 0442405, 10.1007/BF00248417
Reference: [7] M. Kučera: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory.Čas. pěst. mat. 104 (1979), 389-411. MR 0553173
Reference: [8] M. Kučera: A new method for obtaining eigenvalues of variational inequalities. Operators with multiple eigenvalues.Czechoslovak Math. J., 32 (107) 1982, 197-207. MR 0654056
Reference: [9] M. Kučera: Bifurcations points of variational inequalities.Czechoslovak Math. J. 32 (107) 1982, 208-226. MR 0654057
Reference: [10] M. Kučera: Bifurcation points of inequalities of reaction-diffusion type.To appear.
Reference: [11] M. Kučera J. Neustupa: Destabilizing effect of unilateral conditions in reaction-diffusion systems.Comment. Math. Univ. Carol., 27 (1986), 171-187. MR 0843429
Reference: [12] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Praha 1967. MR 0227584
Reference: [13] M. Mimura Y. Nishiura M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems.Ann. New York Acad. Sci., 316 (1979), 490-521. MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [14] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems.SIAM J. Math. Anal. Vol. 13, No. 4, July 1982, 555-593. Zbl 0505.76103, MR 0661590, 10.1137/0513037
Reference: [15] E. H. Zarantonello: Projections on convex sets in Hilbert space and spectral theory. In "Contributions to Nonlinear Functional Analysis".(edited by E. H. Zarantonello). Academic Press, New York, 1971.
Reference: [16] E. Zeidler: Vorlesungen über nichtlineare Funktionalanalysis $l$-Fixpunktsätze.TeubnerTexte zur Mathematik, Leipzig 1976.
.

Files

Files Size Format View
CzechMathJ_36-1986-1_15.pdf 1.807Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo