Previous |  Up |  Next

Article

Title: Natural transformations of second tangent and cotangent functors (English)
Author: Kolář, Ivan
Author: Radziszewski, Zbigniew
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 2
Year: 1988
Pages: 274-279
.
Category: math
.
MSC: 53C15
MSC: 58A30
idZBL: Zbl 0669.53023
idMR: MR946296
DOI: 10.21136/CMJ.1988.102222
.
Date available: 2008-06-09T15:20:59Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102222
.
Reference: [1] C. Godbillon: Géométrie différentielle et méchanique analytique.Paris 1969. Zbl 0174.24602, MR 0242081
Reference: [2] /. Janyska: Geometrical properties of prolongation functors.Čas. pro pěst. mat. 110 (1985), 77-86. Zbl 0582.58002, MR 0791280
Reference: [3] G. Kainz P. Michor: Natural transformations in differential geometry.to appear in Czech. Math. J. MR 0913992
Reference: [4] I. Kolář: On the second tangent bundle and generalized Lie derivatives.Tensor, N.S., 38 (1982), 98-102. MR 0832633
Reference: [5] I. Kolář: Natural transformations of the second tangent functor into itself.Arch. Math. (Brno), XX(1984), 169-172. MR 0784868
Reference: [6] I. Kolář Z. Radziszewski: Some $GL(n,R)$-equivariant smooth maps.Seminar report, Brno 1986.
Reference: [7] M. Modugno G. Stefani: Some results on second tangent and cotangent spaces.Quaderni dell'Istituto di Matematica dell' Università di Lecce, Q. 16, 1978.
Reference: [8] A. Nijenhuis: Natural bundles and their general properties.Differential Geometry, in honour of K. Yano, Kinokuniya, Tokyo, 1972, 317-334. Zbl 0246.53018, MR 0380862
Reference: [9] R. S. Palais С. L. Terng: Natural bundles have finite order.Topology 16 (1977), 271 - 277. MR 0467787, 10.1016/0040-9383(77)90008-8
.

Files

Files Size Format View
CzechMathJ_38-1988-2_11.pdf 788.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo