Previous |  Up |  Next

Article

Title: Structural stability of linear discrete systems via the exponential dichotomy (English)
Author: Kurzweil, Jaroslav
Author: Papaschinopoulos, Garyfalos
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 2
Year: 1988
Pages: 280-284
.
Category: math
.
MSC: 39A10
MSC: 39A11
idZBL: Zbl 0661.93060
idMR: MR946297
DOI: 10.21136/CMJ.1988.102223
.
Date available: 2008-06-09T15:21:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102223
.
Reference: [1] W. A. Coppel: Stability and Asymptotic Behaviour of Differential Equations.Heath. Boston, 1965. MR 0190463
Reference: [2] W. A. Coppel: Dichotomies in Stability Theory.Lecture Notes in Mathematics, No. 629, Springer Verlag, Berlin, 1978. Zbl 0376.34001, MR 0481196
Reference: [3] D. Henry: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics, No. 840, Springer-Verlag, Berlin, 1981. Zbl 0456.35001, MR 0610244
Reference: [4] K. J. Palmer: A characterization of exponential dichotomy in terms of topological equivalence.J. Math. Anal. Appl. 69 (1979), 8-16. Zbl 0419.34011, MR 0535278, 10.1016/0022-247X(79)90175-6
Reference: [5] K. J. Palmer: The structurally stable linear systems on the half-line are those with exponential dichotomies.J. Differential Equations, 33 (1979), 16-25. Zbl 0378.34040, MR 0540813, 10.1016/0022-0396(79)90076-7
Reference: [6] G. Papaschinopoulos, J. Schinas: Criteria for an exponential dichotomy of difference equations.Czechoslovak Math. J. 35 (110) 1985, 295-299. Zbl 0693.39001, MR 0787131
Reference: [7] G. Papaschinopoulos, J. Schinas: A criterion for the exponential dichotomy of difference equations.Rend. Sem. Fас. Sci. Univ. Cagliari, Vol. 54, fasc. 1 (1984), 61-71. Zbl 0607.39001, MR 0797224
Reference: [8] G. Papaschinopoulos, J. Schinas: Multiplicative separation, diagonalizability and structural stability of linear difference equations.Differential Equations: Qualitative theory (Szeged 1984), Colloq. Math. Soc. János Bolyai, 47, North-Holland, Amsterdam-New York. MR 0890580
Reference: [9] G. Papaschinopoulos: Exponential separation, exponential dichotomy and almost periodicity of linear difference equations.J. Math. Anal. Appl. 120 (1986), 276-287. Zbl 0602.39001, MR 0861920, 10.1016/0022-247X(86)90216-7
Reference: [10] G. Papaschinopoulos, J. Schinas: Structural stability via the density of a class of linear discrete systems.J. Math. Anal. Appl. (to appear). Zbl 0628.39001, MR 0915075
Reference: [11] J. Schinas, G. Papaschinopoulos: Topological equivalence for linear discrete systems via dichotomies and Lyapunov functions.Boll. Un. Math. Ital. 6, 4 (1985), 61 - 70. Zbl 0579.39004, MR 0805205
.

Files

Files Size Format View
CzechMathJ_38-1988-2_12.pdf 590.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo