Title:
|
Structural stability of linear discrete systems via the exponential dichotomy (English) |
Author:
|
Kurzweil, Jaroslav |
Author:
|
Papaschinopoulos, Garyfalos |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
38 |
Issue:
|
2 |
Year:
|
1988 |
Pages:
|
280-284 |
. |
Category:
|
math |
. |
MSC:
|
39A10 |
MSC:
|
39A11 |
idZBL:
|
Zbl 0661.93060 |
idMR:
|
MR946297 |
DOI:
|
10.21136/CMJ.1988.102223 |
. |
Date available:
|
2008-06-09T15:21:04Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/102223 |
. |
Reference:
|
[1] W. A. Coppel: Stability and Asymptotic Behaviour of Differential Equations.Heath. Boston, 1965. MR 0190463 |
Reference:
|
[2] W. A. Coppel: Dichotomies in Stability Theory.Lecture Notes in Mathematics, No. 629, Springer Verlag, Berlin, 1978. Zbl 0376.34001, MR 0481196 |
Reference:
|
[3] D. Henry: Geometric Theory of Semilinear Parabolic Equations.Lecture Notes in Mathematics, No. 840, Springer-Verlag, Berlin, 1981. Zbl 0456.35001, MR 0610244 |
Reference:
|
[4] K. J. Palmer: A characterization of exponential dichotomy in terms of topological equivalence.J. Math. Anal. Appl. 69 (1979), 8-16. Zbl 0419.34011, MR 0535278, 10.1016/0022-247X(79)90175-6 |
Reference:
|
[5] K. J. Palmer: The structurally stable linear systems on the half-line are those with exponential dichotomies.J. Differential Equations, 33 (1979), 16-25. Zbl 0378.34040, MR 0540813, 10.1016/0022-0396(79)90076-7 |
Reference:
|
[6] G. Papaschinopoulos, J. Schinas: Criteria for an exponential dichotomy of difference equations.Czechoslovak Math. J. 35 (110) 1985, 295-299. Zbl 0693.39001, MR 0787131 |
Reference:
|
[7] G. Papaschinopoulos, J. Schinas: A criterion for the exponential dichotomy of difference equations.Rend. Sem. Fас. Sci. Univ. Cagliari, Vol. 54, fasc. 1 (1984), 61-71. Zbl 0607.39001, MR 0797224 |
Reference:
|
[8] G. Papaschinopoulos, J. Schinas: Multiplicative separation, diagonalizability and structural stability of linear difference equations.Differential Equations: Qualitative theory (Szeged 1984), Colloq. Math. Soc. János Bolyai, 47, North-Holland, Amsterdam-New York. MR 0890580 |
Reference:
|
[9] G. Papaschinopoulos: Exponential separation, exponential dichotomy and almost periodicity of linear difference equations.J. Math. Anal. Appl. 120 (1986), 276-287. Zbl 0602.39001, MR 0861920, 10.1016/0022-247X(86)90216-7 |
Reference:
|
[10] G. Papaschinopoulos, J. Schinas: Structural stability via the density of a class of linear discrete systems.J. Math. Anal. Appl. (to appear). Zbl 0628.39001, MR 0915075 |
Reference:
|
[11] J. Schinas, G. Papaschinopoulos: Topological equivalence for linear discrete systems via dichotomies and Lyapunov functions.Boll. Un. Math. Ital. 6, 4 (1985), 61 - 70. Zbl 0579.39004, MR 0805205 |
. |