Previous |  Up |  Next

Article

Title: Products of coarse convergence groups (English)
Author: Frič, Roman
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 2
Year: 1988
Pages: 285-290
.
Category: math
.
MSC: 22A05
MSC: 22A30
idZBL: Zbl 0663.54001
idMR: MR946298
DOI: 10.21136/CMJ.1988.102224
.
Date available: 2008-06-09T15:21:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102224
.
Reference: [1] Dikranjan D.: Minimal topologies on Abelian groups.Seminar notes, Universita Padova, Padova 1983.
Reference: [2] Dikranjan D., Frič R., Zanolin F.: On convergence groups with dense coarse subgroups.Czechoslovak Math. J. 37 (112) (1987), 471-479. MR 0904771
Reference: [3] Frič R., Zanolin F.: Coarse convergence groups.Convergence Structures 1984, Proceedings of the Conference on Convergence held in Bechyně (Czechoslovakia) September 24-28, 1984. Mathematical Research 24, Akademie-Verlag, Berlin 1985, 107-114. MR 0835476
Reference: [4] Frič R., Zanolin F.: Sequential convergence in free groups.(To appear.) MR 0928331
Reference: [5] Novák J.: On convergence groups.Czechoslovak Math. J. 20 (1970), 357-374. MR 0263973
Reference: [6] Prodanov J., Stojanov L.: Every minimal Abelian group is precompact.С. R. Acad. Bulgare Sci. 37 (1984), 23-26. MR 0748738
Reference: [7] Simon P., Zanolin F.: A coarse convergence group need not be precompact.Czechoslovak Math. J. 37 (112) (1987), 480-486. Zbl 0637.22003, MR 0904772
Reference: [8] Stephenson R.: Minimal topological groups.Math. Ann. 192 (1971), 193-195. MR 0286934, 10.1007/BF02052870
.

Files

Files Size Format View
CzechMathJ_38-1988-2_13.pdf 918.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo