[2] Chang D. K., Rao M. M.: 
Bimeasures and nonstationary processes. Real and Stochastic Analysis, 7-118, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986. 
MR 0856580 | 
Zbl 0616.60009[3] Diestel J., Uhl J. J.: 
Vector measures. Amer. Math. Soc. Surveys, No. 15, Providence, 1977. 
MR 0453964 | 
Zbl 0369.46039[4] Diestel J.: 
Sequences and Series in Banach spaces. Graduate Texts in Mathematics 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. 
MR 0737004[5] Dobrakov I.: 
On integration in Banach spaces, I. Czech. Math. J. 20 (95), (1970), 511 - 536. 
MR 0365138 | 
Zbl 0215.20103[6] Dobrakov I.: 
On integration in Banach spaces, II. Czech. Math. J. 20 (95), (1970), 680-695. 
MR 0365139 | 
Zbl 0224.46050[7] Dobrakov I.: 
On integration in Banach spaces, III. Czech. Math. J. 29 (104), (1979), 478-499. 
MR 0536071 | 
Zbl 0429.28011[8] Dobrakov I.: 
On integration in Banach spaces, IV. Czech. Math. J. 30 (105), (1980), 259-279. 
MR 0566051 | 
Zbl 0452.28006[9] Dobrakov I.: 
On integration in Banach spaces,V. Czech.Math.J. 30 (105), (1980), 610-628. 
MR 0592324 | 
Zbl 0506.28004[10] Dobrakov I., Morales P.: 
On integration in Banach spacees, VI. Czech. Math. J. 35 (110), (1985), 173-187. 
MR 0787123[11] Dobrakov I.: 
On integration in Banach spaces, VII. Czech. Math. J.38(113),(1988),434-449. 
MR 0950297 | 
Zbl 0674.28003[12] Dobrakov I.: 
On integration in Banach spaces, VIII (Polymeasures). Czech. Math. J. 37 (112), (1987), 487-506. 
MR 0904773 | 
Zbl 0688.28002[13] Dobrakov I.: 
On integration in Banach spaces, IX (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 589-601. 
MR 0962903 | 
Zbl 0688.28003[14] Dobrakov I.: 
On integration in Banach spaces, X (Integration with respect to polymeasures). Czech. Math. J. 38 (113), (1988), 713-725. 
Zbl 0688.28004[15] Dobrakov I.: 
Remarks on the integrability in Banach spaces. Math. Slovaca 36, 1986, 323-327. 
MR 0866632 | 
Zbl 0635.28005[16] Dobrakov I.: 
On representation oflinear operators on $ХС\sb{0}(Т,X)$. Czech. Math. J. 21 (96), (1971), 13-30. 
MR 0276804[17] Dobrakov I.: 
On Lebesgue pseudonorms on $ХС\sb{0}(Т)$. Math. Slovaca 32, 1982, 327-333. 
MR 0676567[18] Dobrakov I.: 
Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i))$. Czech. Math. J. 39 (114), (1989),288-302. 
MR 0992135[19] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i}, X\sb{i})$. Atti Sem. Mat.Fis. Univ. Modena (to appear).
[20] Dobrakov I.: 
On extension of vector polymeasures. Czech. Math. J. 38 (113), (1988), 88-94. 
MR 0925943 | 
Zbl 0688.28005[22] Dobrakov I., Farková J.: 
On submeasures, II. Math. Slovaca 30, (1980), 65-81. 
MR 0568216[25] Kakihara Y.: 
Some remarks on Hilbert space valued stochastic processes. Research Activities7,(1985),9-17. 
MR 0862075[27] Katsaras A. K.: 
Bimeasures on topological spaces. Glasnik Matematički 20 (40), (1985), 35-49. 
MR 0818611 | 
Zbl 0587.28009[32] Morse M., Transue W.: 
C-bimeasures A and their superior integrals A*. Rend. Circ. Mat. Palermo, (2) 4, (1955), 270-300. 
DOI 10.1007/BF02854200 | 
MR 0086115[36] Rao M. M.: 
Harmonizable processes: Structure theory. L'Einseignement math., $II^e$ sér. 28, fasc. 3-4, 1982. 
MR 0684239 | 
Zbl 0501.60046[38] Ylinen K.: 
Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes. Ann. Acad. Sci. Fenn. Ser. A I, 7, (1975),355-385. 
MR 0399755 | 
Zbl 0326.43009[39] YIinen K.: 
On vector bimeasures. Annali Mat.Pura Appl. (4) 777, (1978), 115-138. 
MR 0515957