[1] Beattie R., Butzmann H.-P.: 
Sequentially determined convergence spaces. Czechoslovak Math. J. 37 (1987), 231-247. 
MR 0882596 | 
Zbl 0652.54001[2] Beattie R., Butzmann H.-P., Herrlich H.: 
Filter convergence via sequential convergence. Comment. Math. Univ. Carolin. 27 (1986), 69 - 81. 
MR 0843421 | 
Zbl 0591.54003[3] Butzmann H.-P.: 
Sequentially determined convergence spaces. General Topology and its Relations to Modern Analysis and Algebra, VI (Proc. Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin 1988, 61-68. 
MR 0952591[4] Butzmann H.-P., Beattie R.: 
Some relations between sequential and filter convergence. Convergence Structures 1984 (Bechyně, 1984), Math. Res., 24, Akademie-Verlag, Berlin 1985, 65-70. 
MR 0835472[5] Ferens C., Mikusinski J.: 
Urysohn's condition and Cauchy sequences. Proceedings of the Seminar of S. L. Sobolev No 1, Novosibirsk 1978, 122- 124. 
MR 0567508 | 
Zbl 0423.22001[6] Frič R., Kent D. C.: 
On c-embedded sequential convergence spaces. Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 33-36. 
MR 0613999[7] Frič R., Koutník V.: 
Sequential structures. Convergence Structures and Applications to Analysis, Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik N4 (1979), 37-56. 
MR 0614000[8] Frič R., Koutník V.: 
Completions of convergence groups. General Topology and its Relations to Modern Analysis and Algebra, VI (Proc. Sixth Prague Topological Sympos., 1986), Heldermann Verlag, Berlin 1988, 187-201. 
MR 0952605[9] Frič R., Zanolin F.: 
Sequential convergence in free groups. Rend. Ist. Matem. Univ. Trieste 18 (1986), 200-218. 
MR 0928331[11] Novák J.: 
On completions of convergence commutative groups. General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha 1972, 335-340. 
MR 0365451[12] Zanolin F.: 
Solution of a problem of Josef Novák about convergence groups. Bolletino Un. Mat. Ital. (5) 14-A (1977), 375-381. 
MR 0451220 | 
Zbl 0352.54017