Previous |  Up |  Next

Article

Title: Latent roots of lambda-matrices, Kronecker sums and matricial norms (English)
Author: Vitória, José
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 25
Issue: 6
Year: 1980
Pages: 395-399
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Kronecker sums and matricial norms are used in order to give a method for determining upper bounds for $\left|A\right|$ where $A$ is a latent root of a lambda-matrix. In particular, upper bounds for $\left|z\right|$ are obtained where $z$ is a zero of a polynomial with complex coefficients. The result is compared with other known bounds for $\left|z\right|$. (English)
Keyword: Kronecker sum
Keyword: latent roots
MSC: 15A42
MSC: 15A45
MSC: 30C15
idZBL: Zbl 0469.15005
idMR: MR0596845
DOI: 10.21136/AM.1980.103877
.
Date available: 2008-05-20T18:15:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103877
.
Reference: [1] S. Barnet: Matrices in control theory.Van Nostrand. London 1971. MR 0364275
Reference: [2] R. Bellman: Introduction to matrix analysis.2nd. edit. Mc-Graw Hill, New York, 1970. Zbl 0216.06101, MR 0258847
Reference: [3] J. E. Dennis (JR) J. F. Traub R. P. Weber: On the matrix polynomial, lambda-matrix and eigenvalue problems.Technical Report 71 - 109, Depart. Computer Science, Cornell Univ. 1971.
Reference: [4] E. Deutsch: Matricial norms.Numer. Math. 16 (1970), 73 - 84. Zbl 0206.35801, MR 0277552, 10.1007/BF02162408
Reference: [5] E. Deutsch: Matricial norms and the zeros of polynomials.Lin. Alg. Appl. 6 (1973), 143 to 148. MR 0311877, 10.1016/0024-3795(73)90012-8
Reference: [6] F. R. Dias Agudo: Sobre a equação caracteristica duma matriz.Rev. Fac. Cienc. (Lisboa). Vol. III (1953-1954), 87-136.
Reference: [7] K. G. Guderley: On non linear eigenvalue problems for matrices.J. Ind. and Appl. Math. 6 (1958), 335-353. 10.1137/0106024
Reference: [8] P. Lancaster: Theory of Matrices.Academic Press, New York, 1969. Zbl 0186.05301, MR 0245579
Reference: [9] M. Marden: Geometry of polyomials.American Mathematical Society, Providence, Rhode Island, 2nd. edition, (Math. Survey n° 3), 1966. MR 0225972
Reference: [10] D. S. Mitrinovic: Analytic inequalities.Springer-Verlag, Berlin, 1970. Zbl 0199.38101, MR 0274686
Reference: [11] M. Parodi: La localisation des valeurs caractéristiques des matrices et ses applications.Gauthier-Villars, Paris, 1969.
Reference: [12] F. Robert: Normes vectorielles de vecteurs et de matrices.R.F.T.I. - CHIFFRES, 7, 4 (1964), 261-299. MR 0205433
Reference: [13] F. Robert: Sur les normes vectorielles régulières sur un espace de dimension finie.C.R.A.S. Paris, 261 (1965), 5173-5176. MR 0192317
Reference: [14] F. Robert: Matrices non-negatives et normes vectorielles.(Cours D.E.A.). Université Scientifique et Médicale, Lyon, 1973.
Reference: [15] J. Vitória: Normas vectoriais de vectores e de matrizes.Report. Univ. Lourenço Marques (Mozambique), 1974.
Reference: [16] J. Vitória: Matricial norms and lambda-matrices.Rev. Cienc. Mat. (Maputo, Mozambique), 5 (1974-75), 11-30. MR 0457466
Reference: [17] J. Vitória: Matricial norms and the differences between the zeros of determinants with polynomial elements.Lin. Alg. its Appl. 28 (1979), 279-283. MR 0549440, 10.1016/0024-3795(79)90139-3
.

Files

Files Size Format View
AplMat_25-1980-6_2.pdf 970.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo