Previous |  Up |  Next

Article

Title: Numerical analysis of the general biharmonic problem by the finite element method (English)
Author: Hřebíček, Jiří
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 5
Year: 1982
Pages: 352-374
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit $C^1$-elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform $V_{Oh}$-ellipticity are found. (English)
Keyword: curved triangular finite elements
Keyword: mixed boundary conditions
Keyword: biharmonic problem
Keyword: Bell’s elements
Keyword: Error bounds
MSC: 31A30
MSC: 35J40
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0541.65072
idMR: MR0674981
DOI: 10.21136/AM.1982.103982
.
Date available: 2008-05-20T18:20:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103982
.
Reference: [1] J. H. Bramble S. R. Hilbert: Estimation of linear functional on Sobolev spaces with applications to Fourier transforms and spline interpolation.SIAM J. Numer. Anal. 7 (1970), 112-124. MR 0263214, 10.1137/0707006
Reference: [2] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.Nord-Holland Publishing Соmр., Amsterdam 1978. Zbl 0383.65058, MR 0520174
Reference: [4] I. Hlaváček J. Naumann: Inhomogeneous boundary value problems for the von Kármán equations, I.Apl. mat. 19 (1974), 253 - 269. MR 0377307
Reference: [5] J. Hřebíček: Numerické řešení obecného biharmonického problému metodou konečných prvků.Kandidátská disertační práce. ÚFM ČSAV Brno 1981.
Reference: [6] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Výpočet plošných a prostorových konstrukcí metodou konečných prvků.SNTL Praha 1979.
Reference: [7] P. Lesaint M. Zlámal: Superconvergence of the gradient of finite element solution.R.A.I.R.O. 15 (1979), 139-166. MR 0533879
Reference: [8] L. Mansfield: Approximation of the boundary in the finite element solution of fourth order problems.SIAM J. Numer. Anal. 15 (1978), 568-579. Zbl 0391.65047, MR 0471373, 10.1137/0715037
Reference: [9] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [10] K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky.SNTL, Praha 1974. Zbl 0371.35001, MR 0487652
Reference: [11] A. H. Stroud: Approximate Calculation of Multiple Integrals.Prentice-Hall, Englewood Cliffs, N. J., 1971. Zbl 0379.65013, MR 0327006
Reference: [12] M. Zlámal: The finite element method in domains with curved boundaries.Int. J. Num. Meth. Eng. 5 (1973), 367-373. MR 0395262, 10.1002/nme.1620050307
Reference: [13] M. Zlámal: Curved elements in the finite element method. I.SIAM J. Num. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [14] M. Zlámal: Curved elements in the finite element method. II.SIAM J. Num. Anal. 11 (1974), 347-362. MR 0343660, 10.1137/0711031
Reference: [15] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. mat. 23 (1978), 346-377. MR 0502072
Reference: [16] A. Ženíšek: Nonhomogenous boundary conditions and curved triangular finite elements.Apl. mat. 26 (1981), 121-141. MR 0612669
Reference: [17] A. Ženíšek: Discrete forms of Friedrich's inequalities in the finite element method.R.A.I.R.O. 15 (1981), 265-286. MR 0631681
.

Files

Files Size Format View
AplMat_27-1982-5_6.pdf 2.800Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo