| Title: | Numerical analysis of the general biharmonic problem by the finite element method (English) | 
| Author: | Hřebíček, Jiří | 
| Language: | English | 
| Journal: | Aplikace matematiky | 
| ISSN: | 0373-6725 | 
| Volume: | 27 | 
| Issue: | 5 | 
| Year: | 1982 | 
| Pages: | 352-374 | 
| Summary lang: | English | 
| Summary lang: | Czech | 
| Summary lang: | Russian | 
| . | 
| Category: | math | 
| . | 
| Summary: | The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit $C^1$-elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform $V_{Oh}$-ellipticity are found. (English) | 
| Keyword: | curved triangular finite elements | 
| Keyword: | mixed boundary conditions | 
| Keyword: | biharmonic problem | 
| Keyword: | Bell’s elements | 
| Keyword: | Error bounds | 
| MSC: | 31A30 | 
| MSC: | 35J40 | 
| MSC: | 65N15 | 
| MSC: | 65N30 | 
| idZBL: | Zbl 0541.65072 | 
| idMR: | MR0674981 | 
| DOI: | 10.21136/AM.1982.103982 | 
| . | 
| Date available: | 2008-05-20T18:20:08Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/103982 | 
| . | 
| Reference: | [1] J. H. Bramble S. R. Hilbert: Estimation of linear functional on Sobolev spaces with applications to Fourier transforms and spline interpolation.SIAM J. Numer. Anal. 7 (1970), 112-124. MR 0263214, 10.1137/0707006 | 
| Reference: | [2] J. H. Bramble M. Zlámal: Triangular elements in the finite element method.Math. Соmр. 24 (1970), 809-820. MR 0282540 | 
| Reference: | [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.Nord-Holland Publishing Соmр., Amsterdam 1978. Zbl 0383.65058, MR 0520174 | 
| Reference: | [4] I. Hlaváček J. Naumann: Inhomogeneous boundary value problems for the von Kármán equations, I.Apl. mat. 19 (1974), 253 - 269. MR 0377307 | 
| Reference: | [5] J. Hřebíček: Numerické řešení obecného biharmonického problému metodou konečných prvků.Kandidátská disertační práce. ÚFM ČSAV Brno 1981. | 
| Reference: | [6] V. Kolář J. Kratochvíl F. Leitner A. Ženíšek: Výpočet plošných a prostorových konstrukcí metodou konečných prvků.SNTL Praha 1979. | 
| Reference: | [7] P. Lesaint M. Zlámal: Superconvergence  of the  gradient  of finite element  solution.R.A.I.R.O. 15 (1979), 139-166. MR 0533879 | 
| Reference: | [8] L. Mansfield: Approximation of the boundary in the finite element solution of fourth order problems.SIAM J. Numer. Anal. 15 (1978), 568-579. Zbl 0391.65047, MR 0471373, 10.1137/0715037 | 
| Reference: | [9] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584 | 
| Reference: | [10] K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky.SNTL, Praha 1974. Zbl 0371.35001, MR 0487652 | 
| Reference: | [11] A. H. Stroud: Approximate Calculation of Multiple Integrals.Prentice-Hall, Englewood Cliffs, N. J., 1971. Zbl 0379.65013, MR 0327006 | 
| Reference: | [12] M. Zlámal: The finite element method in domains with curved boundaries.Int. J. Num. Meth. Eng. 5 (1973), 367-373. MR 0395262, 10.1002/nme.1620050307 | 
| Reference: | [13] M. Zlámal: Curved elements in the finite element method. I.SIAM J. Num. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022 | 
| Reference: | [14] M. Zlámal: Curved elements in the finite element method. II.SIAM J. Num. Anal. 11 (1974), 347-362. MR 0343660, 10.1137/0711031 | 
| Reference: | [15] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. mat. 23 (1978), 346-377. MR 0502072 | 
| Reference: | [16] A. Ženíšek: Nonhomogenous boundary conditions and curved triangular finite elements.Apl. mat. 26 (1981), 121-141. MR 0612669 | 
| Reference: | [17] A. Ženíšek: Discrete  forms  of Friedrich's inequalities  in  the finite  element  method.R.A.I.R.O. 15 (1981), 265-286. MR 0631681 | 
| . |