Previous |  Up |  Next

Article

Title: Domain optimization in axisymmetric elliptic boundary value problems by finite elements (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 33
Issue: 3
Year: 1988
Pages: 213-244
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: An axisymmetric second order elliptic problem with mixed boundary conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The existence of an optimal boundary is proven and a convergence analysis for piecewise linear approximate solutions presented, using weighted Sobolev spaces. (English)
Keyword: domain optimization
Keyword: triangular finite element spaces
Keyword: cost functionals
MSC: 35J25
MSC: 49A22
MSC: 65K10
MSC: 65N30
MSC: 65N99
idZBL: Zbl 0677.65102
idMR: MR0944785
DOI: 10.21136/AM.1988.104304
.
Date available: 2008-05-20T18:34:42Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104304
.
Reference: [1] D. Begis R. Glowinski: Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal.Appl. Math. & Optim. 2 (1975), 130-169. MR 0443372, 10.1007/BF01447854
Reference: [2] B. Mercier G. Raugel: Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et series de Fourier en $\theta$.R. A. I. R. O. , Anal. numér., 16 (1982), 405-461. MR 0684832
Reference: [3] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [4] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators.DVW, Berlin 1978. Zbl 0387.46033, MR 0503903
Reference: [5] P. G. Ciarlet: The finite element method for elliptic problems.North- Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174
.

Files

Files Size Format View
AplMat_33-1988-3_6.pdf 3.324Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo