[1] J. R. Cannon, Yanping Lin:
Non-classical $H^1$ projection and Galerkin methods for nonlinear parabolic integro-differential equations. Calcolo, 25 (1988) 187- 201,
DOI 10.1007/BF02575943 |
MR 1053754
[2] J. R. Cannon Y. Lin:
A priori $L^2$ error estimates for finite element methods for nonlinear diffusion equations with memory. SJAM. J. Numer. Anal., 27 (1990) 595-607.
DOI 10.1137/0727036 |
MR 1041253
[4] E. Green-Yanik G. Fairweather:
Finite element methods for parabolic and hyperbolic partial integro-differential equations. to appear in Nonlinear Analysis.
MR 0954953
[5] M. N. Le Roux V. Thomee:
Numerical solution of semilinear integro-differential equations of parabolic type. SIAM J. Numer. Anal., 26 (1989) 1291-1309.
DOI 10.1137/0726075 |
MR 1025089
[6] Y. Lin V. Thomee L. Wahlbin:
A Ritz-Volterra projection onto finite element spaces and application to integro and related equations. to appear in SIAM J. Numer. Anal.
MR 1111453
[7] Qun Lin, Tao Lu, Shu-min Shen:
Maximum norm estimate, extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulalion. J. Соmр. Math., Vol. 1, No. 4 (1983) 376-383.
MR 0726394
[8] Qun Lin, Qi-ding Zhou: Superconvergence Theory of Finite Element Methods. Book to appear.
[9] J. A. Nitsche:
$L_{\infty}$-convergence of finite element Galerkin approximations for parabolic problems. R.A.I.R.O., Vol. 13, No. 1, (1979) 31-51.
MR 0527037 |
Zbl 0401.65069
[10] R. Rannacher R. Scott:
Some optimal error estimates for piecewise linear finite element approximations. Math. Соmр. 38 (1982) 437-445.
MR 0645661
[11] A. H. Schatz V. Thomée L. Wahlbin:
Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pur. Appl. Math., XXXIII, (1980) 265-304.
MR 0562737
[12] R. Scott:
Optimal $L^{\infty}$ estimates for the finite element on irregular meshes. Math. Соmр., 30 (1976) 681-697.
MR 0436617 |
Zbl 0349.65060
[13] V. Thomee N. Y. Zhang:
Error estimates for semi-discrete finite element methods for parabolic integro-differential equations. Math. Соmр., 53 (1989) 121-139.
MR 0969493
[14] M. F. Wheeler:
A priori $L_2$ error estimates for Galerkin methods to parabolic partial differential equations. SIAM J. Numer. Anal. 19 (1973) 723-759.
DOI 10.1137/0710062 |
MR 0351124