Previous |  Up |  Next

Article

Title: Wave equation with a concentrated moving source (English)
Author: Kameń, Vladimír B.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 3
Year: 1991
Pages: 181-186
Summary lang: English
.
Category: math
.
Summary: A tempered distribution which is an exact solution of the wave equation with a concentrated moving source on the right-hand side, is obtained in the paper by means of the Cagniard - de Hoop method. (English)
Keyword: Cauchy problem
Keyword: Dirac delta function
Keyword: complex variables
MSC: 35C05
MSC: 35D05
MSC: 35L05
idZBL: Zbl 0735.35031
idMR: MR1109123
DOI: 10.21136/AM.1991.104458
.
Date available: 2008-05-20T18:41:35Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104458
.
Reference: [1] W. Nowacki: The theory of elasticity.(Russian). Moscow, 1975. Zbl 0385.73007
Reference: [2] T. D. Lee: Mathematical methods in Physics.(Russian). Moscow, 1965. MR 0192677
Reference: [3] A. T. De Hoop: A modification of Cagniard's method for solving seismic pulse problems.Appl. Sd. Res. Sect. B, vol. 8 (1960), 4, 349-356. Zbl 0100.44208, 10.1007/BF02920068
Reference: [4] A. P. Prudnikov, Yu. A. Brychkov O. A. Marichev: Integrals and series. Special functions.(Russian). Moscow, 1983.
Reference: [5] A. P. Prudnikov, Yu. A. Brychkov O. A. Marichev: Integrals and series. Elementary functions.(Russian). Moscow, 1981.
Reference: [6] V. B. Poruchikov: The methods of elastodynamics.(Russian). Moscow, 1986.
Reference: [7] V. A. Ditkin A. P. Prudnikov: Integral transforms and operational calculus.(Russian). Moscow, 1961. MR 0481946
Reference: [8] I. M. Gelfand G. E. Shilov: Generalized functions and operations with them. Vol. 1.(Russian). Moscow, 1959.
.

Files

Files Size Format View
AplMat_36-1991-3_2.pdf 711.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo