Previous |  Up |  Next

Article

Title: Natural and smoothing quadratic spline. (An elementary approach) (English)
Author: Kobza, Jiří
Author: Zápalka, Dušan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 36
Issue: 3
Year: 1991
Pages: 187-204
Summary lang: English
.
Category: math
.
Summary: For quadratic spine interpolating local integrals (mean-values) on a given mesh the conditions of existence and uniqueness, construction under various boundary conditions and other properties are studied. The extremal property of such's spline allows us to present an elementary construction and an algorithm for computing needed parameters of such quadratic spline smoothing given mean-values. Examples are given illustrating the results. (English)
Keyword: spline functions
Keyword: quadratic spline
Keyword: interpolation
Keyword: smoothing by splines
Keyword: histosplines
Keyword: parabolic spline
Keyword: cubic spline interpolation
Keyword: natural spline interpolation
MSC: 41A15
MSC: 65D05
MSC: 65D07
idZBL: Zbl 0731.65006
idMR: MR1109124
DOI: 10.21136/AM.1991.104459
.
Date available: 2008-05-20T18:41:38Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104459
.
Reference: [1] J. H. Ahlberg E. N. Nilson J. L. Walsh: The Theory of Splines and Their Applications.Acad. Press, New York 1967 (Russian translation, Moscow, Mir 1972). MR 0239327
Reference: [2] C. de Boor: A Practical Guide to Splines.New York, Springer-Verlag 1978 (Russian translation, Moscow, Sov. radio 1985). Zbl 0406.41003, MR 0507062
Reference: [3] J. Kobza: An algorithm for biparabolic spline.Aplikace matematiky 32 (1987), 401-413. Zbl 0635.65006, MR 0909546
Reference: J. Kobza: Some properties of interpolating quadratic splines.Acta UPO, FRN, Vol. 97 (1990), Math. XXIV, 45-63. MR 1144830
Reference: [4] P.-J. Laurent: Approximation et optimization.Paris, Hermann 1972 (Russian translation, Moscow, Mir. 1975). MR 0467080
Reference: [5] В. Л. Макаров В. В. Хлобыстов: Сплайн-аппроксимация функций.Москва, Высшая школа 1983. Zbl 1229.47001
Reference: [6] I. J. Schoenberg: Splines and histograms.In: Spline Functions and Approximation Theory (Meir, Sharma - eds.), Basel, Birkhäuser Verlag (1973), 277-327. Zbl 0274.41004, MR 0372477
Reference: [7] M. H. Schultz: Spline Analysis.Englewood Cliffs, Prentice-Hall 1973. Zbl 0333.41009, MR 0362832
Reference: [8] С. Б. Стечкин Ю. H. Субботин: Сплайны в вычислительной математике.Москва, Наука 1976. Zbl 1226.05083
Reference: [9] В. А. Василенко: Сплайн-функции. Теория, алгоритмы, программы.Новосибирск, Наука (СО), 1983. Zbl 1171.53341
Reference: [10] В. С. Завьялов Б. И. Квасов В. Л. Мирошниченко: Методы сплайн-функций.Москва, Наука 1980. Zbl 1229.60003
.

Files

Files Size Format View
AplMat_36-1991-3_3.pdf 1.816Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo