Previous |  Up |  Next

Article

Title: On an inequality and the related characterization of the gamma distribution (English)
Author: Koicheva, Maia
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 38
Issue: 1
Year: 1993
Pages: 11-18
Summary lang: English
.
Category: math
.
Summary: In this paper we derive conditions upon the nonnegative random variable \xi under which the inequality $Dg(\xi)\leq cE\left[g'\left(\xi\right)\right]^2\xi$ holds for a fixed nonnegative constant $c$ and for any absolutely continuous function $g$. Taking into account the characterization of a Gamma distribution we consider the functional $U_\xi = \sup_g \frac{Dg\left(\xi\right)}{E\left[g'\left(\xi\right)\right]^2\xi}$ and establishing some of its properties we show that $U_\xi \geq 1$ and that $U_\xi =1$ iff the random variable $\xi$ has a Gamma distribution. (English)
Keyword: characterizations
Keyword: Gamma distribution
MSC: 60E15
MSC: 60E99
MSC: 62E10
idZBL: Zbl 0776.60021
idMR: MR1202076
DOI: 10.21136/AM.1993.104530
.
Date available: 2008-05-20T18:44:46Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104530
.
Reference: [1] H. Chernoff: A note on an inequality involving the normal distribution.Ann. Probab. 9 (3) (1981), 533-535. Zbl 0457.60014, MR 0614640, 10.1214/aop/1176994428
Reference: [2] A. A. Borovkov S. A. Utev: On an inequality and a related characterization of the normal distribution.Theory of Probab. and its Appl. 28 (2) (1983), 219-228. MR 0700206
Reference: [3] T. Cacoullos: On upper and lower bounds for the variance of a function of a random variable.Ann. Probab. 10(1982), 799-809. Zbl 0492.60021, MR 0659549, 10.1214/aop/1176993788
Reference: [4] T. Cacoullos V. Papathanasiou: On upper bounds for the variance of functions of random variables.Statistics and Probability Letters 3 (1985), 175-184. MR 0801687, 10.1016/0167-7152(85)90014-8
Reference: [5] L. Chen: An inequality for the multivariate normal distribution.J. Multivariate Anal. 12 (1982), 306-315. Zbl 0483.60011, MR 0661566, 10.1016/0047-259X(82)90022-7
Reference: [6] B. L. S. Prakasa Rao M. Sreehari: Another characterization of multivariate normal distribution.Statistics and Probability Letters 4 (1986), 209-210. MR 0848719, 10.1016/0167-7152(86)90068-4
Reference: [7] B. L. S. Prakasa Rao M. Sreehari: On a characterization of Poisson distribution through an inequality of Chernoff type.Aus. J. Statist. 29 (1987), 38-41. MR 0899374, 10.1111/j.1467-842X.1987.tb00718.x
Reference: [8] T. Cacoullos V. Papathanasiou: Characterizations of distributions by variance bounds.Statistics and Probability Letters 7 (5) (1989), 351-356. MR 1001133, 10.1016/0167-7152(89)90050-3
.

Files

Files Size Format View
AplMat_38-1993-1_2.pdf 768.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo