Previous |  Up |  Next

Article

Keywords:
characterizations; Gamma distribution
Summary:
In this paper we derive conditions upon the nonnegative random variable \xi under which the inequality $Dg(\xi)\leq cE\left[g'\left(\xi\right)\right]^2\xi$ holds for a fixed nonnegative constant $c$ and for any absolutely continuous function $g$. Taking into account the characterization of a Gamma distribution we consider the functional $U_\xi = \sup_g \frac{Dg\left(\xi\right)}{E\left[g'\left(\xi\right)\right]^2\xi}$ and establishing some of its properties we show that $U_\xi \geq 1$ and that $U_\xi =1$ iff the random variable $\xi$ has a Gamma distribution.
References:
[1] H. Chernoff: A note on an inequality involving the normal distribution. Ann. Probab. 9 (3) (1981), 533-535. DOI 10.1214/aop/1176994428 | MR 0614640 | Zbl 0457.60014
[2] A. A. Borovkov S. A. Utev: On an inequality and a related characterization of the normal distribution. Theory of Probab. and its Appl. 28 (2) (1983), 219-228. MR 0700206
[3] T. Cacoullos: On upper and lower bounds for the variance of a function of a random variable. Ann. Probab. 10(1982), 799-809. DOI 10.1214/aop/1176993788 | MR 0659549 | Zbl 0492.60021
[4] T. Cacoullos V. Papathanasiou: On upper bounds for the variance of functions of random variables. Statistics and Probability Letters 3 (1985), 175-184. DOI 10.1016/0167-7152(85)90014-8 | MR 0801687
[5] L. Chen: An inequality for the multivariate normal distribution. J. Multivariate Anal. 12 (1982), 306-315. DOI 10.1016/0047-259X(82)90022-7 | MR 0661566 | Zbl 0483.60011
[6] B. L. S. Prakasa Rao M. Sreehari: Another characterization of multivariate normal distribution. Statistics and Probability Letters 4 (1986), 209-210. DOI 10.1016/0167-7152(86)90068-4 | MR 0848719
[7] B. L. S. Prakasa Rao M. Sreehari: On a characterization of Poisson distribution through an inequality of Chernoff type. Aus. J. Statist. 29 (1987), 38-41. DOI 10.1111/j.1467-842X.1987.tb00718.x | MR 0899374
[8] T. Cacoullos V. Papathanasiou: Characterizations of distributions by variance bounds. Statistics and Probability Letters 7 (5) (1989), 351-356. DOI 10.1016/0167-7152(89)90050-3 | MR 1001133
Partner of
EuDML logo