Previous |  Up |  Next

Article

Keywords:
Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers
Summary:
We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.
References:
[1] I. Babuška: Uncertainties in engineering design: mathematical theory and numerical experience. In the Optimal Shape, (J. Bennet and M. M. Botkin eds.), Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35.
[2] J. Céa: Optimization, théorie et algorithmes. Dunod, Paris, 1971. MR 0298892
[3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058
[4] I. Doležel: Numerical calculation of the leakage field in the window of a transformer with magnetic shielding. Acta Tech. ČSAV (1981), 563-588.
[5] M. Feistauer: Mathematical methods in fluid dynamics. Longman Scientific & Technical, Harlow, 1993. Zbl 0819.76001
[6] I. Hlaváček J. Nečas: On inequalities of Korn's type. Arch. Rational Mech. Anal. 36 (1970), 305-334. DOI 10.1007/BF00249518 | MR 0252844
[7] M. Křížek W. G. Litvinov: On the methods of penalty functions and Lagrange's multipliers in the abstract Neumann problem. Z. Angew. Math. Mech. (1993).
[8] M. Křížek Z. Milka: On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions. Banach Center Publ. (1993). MR 1272920
[9] M. Křížek P. Neittaanmäki M. Vondrák: A nontraditional approach for solving the Neumann problem by the finite element method. Mat. Apl. Comput. 11 (1992), 31-40. MR 1185236
[10] W. G. Litvinov: Optimization in elliptic boundary value problems with applications to mechanics. (in Russian), Nauka, Moscow, 1987. MR 0898435 | Zbl 0688.49003
[11] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, 1981. MR 0600655
[12] B. N. Pšeničnyj, Ju. M. Danilin: Numerical methods in extremum problems. (Russian), Nauka, Moscow, 1975. MR 0474817
[13] L. Schwartz: Analyse mathématique, Vol. 1. Hermann, Paris, 1967.
[14] A. E. Taylor: Introduction to functional analysis. John Wiley & Sons, New York, 1958. MR 0098966 | Zbl 0081.10202
[15] R. Temam: Navier-Stokes equations. North-Holland, Amsterdam, 3rd revised edn, 1984. Zbl 0568.35002
[16] D. E. Ward: Exact penalties and sufficient conditions for optimality in nonsmooth optimization. Optim. Theory Appl. 57 (1988), 485-499. DOI 10.1007/BF02346165 | MR 0944591 | Zbl 0621.90081
Partner of
EuDML logo