Article
Keywords:
iterative methods; block matrix; domain decomposition; relaxation method; numerical experiments; domain decomposition; relaxation parameters; convergence; Neumann-Neumann preconditioner
Summary:
An iterative procedure containing two parameters for linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numeric example is given as an illustration.
References:
[1] M. Práger:
An iterative method of alternating type for systems with special block matrices. Appl. math. 36 (1991), 72-78.
MR 1093483
[2] P. Bjørstad O. Widlund:
Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM, J. Numer. Anal 23 (1986), 1097-1120.
DOI 10.1137/0723075 |
MR 0865945
[4]
First international symposium on domain decomposition methods for partial differential equations. (R. Glowinski, G. H. Golub, G. A. Meurant, J. Périaux, eds.), SIAM, Philadelphia, 1988.
MR 0972509 |
Zbl 0649.00019
[5]
Domain decomposition methods. (T. Chan, R. Glowinski, G. A. Meurant, J. Périaux, O. Widlund, eds.), SIAM, Philadelphia, 1989.
MR 0991999 |
Zbl 0825.65091
[6] L. D. Marini A. Quarteroni:
A relaxation procedure for domain decomposition methods using finite elements. Numer. Math 55 (1989), 575-598.
DOI 10.1007/BF01398917 |
MR 0998911
[7] M. Práger:
Algebraic approach to domain decomposition. Banach Center Publ., Warsaw, to appear.
MR 1272930