Title:
|
Approximation of ${\bf R}^X$ with countable subsets of $C_p(X)$ and calibers of the space $C_p (X)$ (English) |
Author:
|
Tkachuk, V. V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
27 |
Issue:
|
2 |
Year:
|
1986 |
Pages:
|
267-276 |
. |
Category:
|
math |
. |
MSC:
|
54A25 |
MSC:
|
54C35 |
MSC:
|
54C40 |
MSC:
|
54D60 |
idZBL:
|
Zbl 0601.54002 |
idMR:
|
MR857546 |
. |
Date available:
|
2008-06-05T21:24:49Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106449 |
. |
Reference:
|
[1] M. E. RUDIN: Lectures on set theoretic topology.Conf. ser. in Math, 23, Amer. Math. Soc, Providence, 1975. Zbl 0318.54001, MR 0367886 |
Reference:
|
[2] A. B. AРХАНГЕЛЬСКИЙ: Cтроенийе и классификация топологицеских пространств и кардинальные инварианты.Уcпехи Матем. Наук 33, 6 (1978), 29-84. Zbl 0473.57022, MR 0526012 |
Reference:
|
[3] D. B. ŠAHMATOV: No upper bound for cardinalities of Tychonoff ccc spaces with a $G_{\delta}$-diagonal exists.(An answer to J. Ginsburg and R. G. Woods question.) Comment. Math. Univ. Carolinae 25 (1984), 731-746. MR 0782022 |
Reference:
|
[4] J. GINSBURG R. G. WOODS: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Amer. Math. Soc. 64 (1977), 357-360. MR 0461407 |
Reference:
|
[5] V. V. USPENSKIJ: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property.Comment. Math. Univ. Carolinae 25 (1984), 257-260. MR 0768812 |
. |