Previous |  Up |  Next

Article

References:
[1] M. KUČERA: Bifurcation points of variational inequalities. Czechoslovak Math. J. 32 (107) (1982), 208-226. MR 0654057
[2] M. KUČERA: A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory. Čas. pěst. mat. 104 (1979), 389-411. MR 0553173
[3] E. MIERSEMANN: Über höhere Verzweigungspunkte nichtlinearer Variationsungleichungen. Math. Nachr. 85 (1978), 195-213. MR 0517651 | Zbl 0324.49036
[4] E. MIERSEMANN: Höhere Eigenwerte von Variationsungleichungen. Beiträge zur Analysis 17 (1981), 65-68. MR 0663272 | Zbl 0475.49016
[5] E. MIERSEMANN: On higher eigenvalues of variational inequalities. Comment. Math. Univ. Carolinae 24 (1983), 657-665. MR 0738561 | Zbl 0638.49020
[6] P. QUITTNER: A note to E. Miersemann's papers on higher eigenvalues of variational inequalities. Comment. Math. Univ. Carolinae 26 (1985), 665-674. MR 0831803
[7] P. QUITTNER: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type. to appear. MR 0916198 | Zbl 0617.35053
[8] R. ŠVARC: The solution of a Fučík' conjecture. Comment. Math. Univ. Carolinae 25 (1984), 483-517. MR 0775566
[9] R. ŠVARC: The operators with jumping nonlinearities and combinatorics. to appear. MR 0938476
[10] R. ŠVARC: Some combinatorial results about the operators with jumping nonlinearities. to appear. MR 0928685
[11] P. QUITTNER: Spectral analysis of variational inequalities. Thesis. Charles University, Prague. Zbl 0652.49008
Partner of
EuDML logo