Previous |  Up |  Next

Article

Title: Classes of graphs definable by graph algebra identities or quasi-identities (English)
Author: Pöschel, Reinhard
Author: Wessel, Walter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 3
Year: 1987
Pages: 581-592
.
Category: math
.
MSC: 05C75
MSC: 05C99
MSC: 08A05
MSC: 08B05
MSC: 08B99
MSC: 08C15
idZBL: Zbl 0621.05030
idMR: MR912586
.
Date available: 2008-06-05T21:30:25Z
Last updated: 2012-07-13
Stable URL: http://hdl.handle.net/10338.dmlcz/106570
.
Reference: [1] K. A. BAKER G. F. McNULTY H. WERNER: Locally finite non-finitely based varieties of algebras.Preprint 1985.
Reference: [2] S. BURRIS H. P. SANKAPPANAVAR: A course in universal algebra.Graduate Texts Math. 78. N.Y. - Heidelberg - Berlin 1981. MR 0648287
Reference: [3] M. Ch. GOLUMBIC: Algorithmic graph theory and perfect graphs.Academic Press, New York 1980. Zbl 0541.05054, MR 0562306
Reference: [4] E. W. KISS: A note on varieties of graph algebras.Lecture Notes Math. 1149 (1985), pp. 163-166. Zbl 0572.08009, MR 0823014
Reference: [5] E. W. KISS R. PÖSCHEL P. PRÖHLE: Subvarieties of varieties generated by graph algebras.(Manuscript 1986, in preparat.)
Reference: [6] K. KRIEGEL R. PÖSCHEL W. WESSEL: The dimension of graphs with respect to direct powers of a two-element graph.Bull. Austral. Math. Soc. (to appear). MR 0909772
Reference: [7] G. F. McNULTY C. SHALLON: Inherently nonfinitely based finite algebras.Lecture Notes Math. 1004 (1983), 206-231. MR 0716184
Reference: [8] R. H. MÖHRING F. J. RADERMACHER: Substitution decomposition for discrete structures and connections with combinatorial optimization.Ann. Discrete Math. 19 (1984), 257-356. MR 0780025
Reference: [9] Sh. OATES-WILLIAMS: Murskii's algebra does not satisfy MIN.Bull. Austral. Math. Soc. 22 (1980), 199-203. Zbl 0487.08008, MR 0598691
Reference: [10] Sh. OATES-WILLIAMS: Graphs and universal algebras.Lecture Notes Math. 884 (1981), 351-354. Zbl 0468.05068, MR 0641259
Reference: [11] R. PÖSCHEL: Graph algebras and graph varieties.(Manuscript 1985, submitted to Algebra Univ.).
Reference: [12] R. PÖSCHEL: Shallon-algebras and varieties for graphs and relational systems.In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie. Bergakademie Freiberg, Sekt. Math., 1986, pp. 53-56. (Proc. Conf. "Algebra und Anwendungen", Siebenlehn).
Reference: [13] R. PÖSCHEL W. WESSEL: Classes of graphs which can be defined by equations in their graph algebras.Prel. report, 1984.
Reference: [14] M. POUZET I. G. ROSENBERG: Embeddings and absolute retracts of relational systems.Preprint CRM-1265, Montreal, Febr. 1985. MR 1768213
Reference: [15] A. PULTR: On product dimensions in general and that of graphs in particular.Vorträge zu Grundlagen der Informatik, Weiterbildungszentrum Math. Kybernetik u. Rechentechnik, Sektion Math., TU Dresden, Heft 27, (1977). 66-79.
Reference: [16] A. PULTR O. VINÁREK: Productive classes and subdirect irreducibility, in particular for graphs.Discrete Math. 20 (1977), 159-176. MR 0485593
Reference: [17] C. R. SHALLON: Nonfinitely based finite algebras derived from lattices.Ph. D. Dissertation, Univ. of California, Los Angeles. 1979.
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-3_19.pdf 1.168Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo