Previous |  Up |  Next

Article

Title: Monotonicity theorems for second order non-linear differential equations (English)
Author: Bartušek, Miroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 16
Issue: 3
Year: 1980
Pages: 127-135
.
Category: math
.
MSC: 34A34
MSC: 34C15
idZBL: Zbl 0448.34041
idMR: MR594458
.
Date available: 2008-06-06T06:07:51Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107065
.
Reference: [1] M. Бapтyшек: O нyляx кoлеблющиxcя pешений ypaвнения $(p(x)x')' + f(t, x, x') = 0$.Дифф. ypaв., XII, Но. 24, 621-625.
Reference: [2] M. Bartušеk: On Zeros of Solutions of the Differential Equation $(p(t)y')' + f(t,y,y') = 0$.Arch. Math., XI, No. 4, 187-192. MR 0409975
Reference: [3] M. Bartušek: Monotonicity Theorems concerning Differential Equations $y" +f(t,y,y') = 0$.Arch. Math., XII, No. 4, 1976, 169-178. MR 0430410
Reference: [4] M. Bartušek: On Zeros of Solutions of the Differential Equation $y" + f(t,y)g(y') = 0$.Aгch. Math., XV, 3, 129-132. MR 0562336
Reference: [5] I. Bihaгi: Oscillation and Monotonity Theorems Concerning Non-linear Differential Equations of the Second Order.Acta Math. Acad. Sci. Нung., IX, No. 1-2, 1958, 83-104. MR 0095321
Reference: [6] K. M. Daѕ: Comparison and Monotonity Theorems for Second Order Non-linear Differential Equations.Acta Math. Sci. Hung., XV, No. 3-4, 1964, 449-456. MR 0176155
Reference: [7] A. Г. Kaтpaмoв: Oб acuмnmomuчecкoм noвeдeнuu кoлeблющuxcя peшeнuй ypaвлeнuя $\ddot{x} + f(t, x)g(\dot{x}) = 0$.Дифф. ypaблeния, VIH, Но. 6, 1972, 1111-1115.
.

Files

Files Size Format View
ArchMath_016-1980-3_1.pdf 1.205Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo